Bergez M, Fritsch N, Tran-Van D, Saghi T, Bounkim T, Gentile A, et al. PEEP titration in moderate to severe ARDS: plateau versus transpulmonary pressure. Ann Intensive Care. 2019;9(1):81.
Article
Google Scholar
Crotti S, Mascheroni D, Caironi P, Pelosi P, Ronzoni G, Mondino M, et al. Recruitment and derecruitment during acute respiratory failure: a clinical study. Am J Respir Crit Care Med. 2001;164(1):131–40.
Article
CAS
Google Scholar
Foti G, Cereda M, Sparacino ME, De Marchi L, Villa F, Pesenti A. Effects of periodic lung recruitment maneuvers on gas exchange and respiratory mechanics in mechanically ventilated acute respiratory distress syndrome (ARDS) patients. Intensive Care Med. 2000;26(5):501–7.
Article
CAS
Google Scholar
Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. The acute respiratory distress syndrome network. N Engl J Med. 2000;342(18):1301–8.
Suarez-Sipmann F, Bohm SH, Tusman G, Pesch T, Thamm O, Reissmann H, et al. Use of dynamic compliance for open lung positive end-expiratory pressure titration in an experimental study. Crit Care Med. 2007;35(1):214–21.
Article
Google Scholar
Pintado MC, de Pablo R, Trascasa M, Milicua JM, Rogero S, Daguerre M, et al. Individualized PEEP setting in subjects with ARDS: a randomized controlled pilot study. Respir Care. 2013;58(9):1416–23.
Article
Google Scholar
Su PL, Lin WC, Ko YF, Cheng KS, Chen CW. Electrical impedance tomography analysis between two similar respiratory system compliance during Decremetal PEEP titration in ARDS patients. J Med Biol Eng. 2021:1–7.
Brabant O, Crivellari B, Hosgood G, Raisis A, Waldmann AD, Auer U, et al. Effects of PEEP on the relationship between tidal volume and total impedance change measured via electrical impedance tomography (EIT). J Clin Monit Comput. 2021:1–10. https://doi.org/10.1007/s10877-021-00651-x Epub ahead of print. PMID: 33492490; PMCID: PMC7829490.
Umbrello M, Marino A, Chiumello D. Tidal volume in acute respiratory distress syndrome: how best to select it. Ann Transl Med. 2017;5(14):287.
Article
Google Scholar
Yerworth RJ, Frerichs I, Bayford R. Analysis and compensation for errors in electrical impedance tomography images and ventilation-related measures due to serial data collection. J Clin Monit Comput. 2017;31(5):1093–101.
Article
Google Scholar
Li Z, Qin S, Chen C, Mei S, Yao Y, Zhao Z, et al. Emerging trends and hot spots of electrical impedance tomography applications in clinical lung monitoring. Front Med (Lausanne). 2021;8:813640.
Article
Google Scholar
Costa EL, Borges JB, Melo A, Suarez-Sipmann F, Toufen C Jr, Bohm SH, et al. Bedside estimation of recruitable alveolar collapse and hyperdistension by electrical impedance tomography. Intensive Care Med. 2009;35(6):1132–7.
Article
Google Scholar
Zhao Z, Moller K, Steinmann D, Frerichs I, Guttmann J. Evaluation of an electrical impedance tomography-based global inhomogeneity index for pulmonary ventilation distribution. Intensive Care Med. 2009;35(11):1900–6.
Article
Google Scholar
Zhao Z, Steinmann D, Frerichs I, Guttmann J, Moller K. PEEP titration guided by ventilation homogeneity: a feasibility study using electrical impedance tomography. Crit Care. 2010;14(1):R8.
Article
Google Scholar
Zhao Z, Steinmann D, Frerichs I, Guttmann J, Moller K. Ventilation inhomogeneity is one criterion among many in multidimensional PEEP titration. Crit Care. 2010;14(3):424.
Article
Google Scholar
Force ADT, Ranieri VM, Rubenfeld GD, Thompson BT, Ferguson ND, Caldwell E, et al. Acute respiratory distress syndrome: the Berlin definition. JAMA. 2012;307(23):2526–33.
Google Scholar
Heines SJH, Strauch U, van de Poll MCG, Roekaerts P, Bergmans D. Clinical implementation of electric impedance tomography in the treatment of ARDS: a single Centre experience. J Clin Monit Comput. 2019;33(2):291–300.
Article
Google Scholar
Wirth S, Baur M, Spaeth J, Guttmann J, Schumann S. Intraoperative positive end-expiratory pressure evaluation using the intratidal compliance-volume profile. Br J Anaesth. 2015;114(3):483–90.
Article
CAS
Google Scholar
Esmaeili R, Nasiri E, Ghafari R, Mousavinasab SN, Saffari NH. Frequency rate of atelectasis in patients following coronary artery bypass graft and its associated factors at mazandaran heart center in 2013-2014. Mediev Archaeol. 2015;69(2):72–6.
Google Scholar
Franchineau G, Brechot N, Lebreton G, Hekimian G, Nieszkowska A, Trouillet JL, et al. Bedside contribution of electrical impedance tomography to setting positive end-expiratory pressure for extracorporeal membrane oxygenation-treated patients with severe acute respiratory distress syndrome. Am J Respir Crit Care Med. 2017;196(4):447–57.
Article
CAS
Google Scholar
Bikker IG, Preis C, Egal M, Bakker J, Gommers D. Electrical impedance tomography measured at two thoracic levels can visualize the ventilation distribution changes at the bedside during a decremental positive end-expiratory lung pressure trial. Crit Care. 2011;15(4):R193.
Article
Google Scholar
Bruhn A, Bugedo D, Riquelme F, Varas J, Retamal J, Besa C, et al. Tidal volume is a major determinant of cyclic recruitment-derecruitment in acute respiratory distress syndrome. Minerva Anestesiol. 2011;77(4):418–26.
CAS
PubMed
Google Scholar
Zick G, Elke G, Becher T, Schadler D, Pulletz S, Freitag-Wolf S, et al. Effect of PEEP and tidal volume on ventilation distribution and end-expiratory lung volume: a prospective experimental animal and pilot clinical study. PLoS One. 2013;8(8):e72675.
Article
CAS
Google Scholar
Dargaville PA, Rimensberger PC, Frerichs I. Regional tidal ventilation and compliance during a stepwise vital capacity manoeuvre. Intensive Care Med. 2010;36(11):1953–61.
Article
Google Scholar
Karsten J, Luepschen H, Grossherr M, Bruch HP, Leonhardt S, Gehring H, et al. Effect of PEEP on regional ventilation during laparoscopic surgery monitored by electrical impedance tomography. Acta Anaesthesiol Scand. 2011;55(7):878–86.
Article
CAS
Google Scholar
Cressoni M, Chiumello D, Algieri I, Brioni M, Chiurazzi C, Colombo A, et al. Opening pressures and atelectrauma in acute respiratory distress syndrome. Intensive Care Med. 2017;43(5):603–11.
Article
Google Scholar
Czaplik M, Antink CH, Rossaint R, Leonhardt S. Application of internal electrodes to the oesophageal and tracheal tube in an animal trial: evaluation of its clinical and technical potentiality in electrical impedance tomography. J Clin Monit Comput. 2014;28(3):299–308.
Article
Google Scholar
Czaplik MBI, Follmann A, Rossaint R, Leonhardt S. Optimizing PEEP in ARDS: comparison of diverse EIT parameters. In: Proc of the 15th Int Conf on Biomedical applications of Electrical Impedance Tomography Gananoque. Ontario; 2014. p. p74.
Costa EL, Amato MB. Can heterogeneity in ventilation be good? Crit Care. 2010;14(2):134.
Article
Google Scholar
Hochhausen N, Biener I, Rossaint R, Follmann A, Bleilevens C, Braunschweig T, et al. Optimizing PEEP by electrical impedance tomography in a porcine animal model of ARDS. Respir Care. 2017;62(3):340–9.
Article
Google Scholar
Yang L, Dai M, Cao X, Moller K, Dargvainis M, Frerichs I, et al. Regional ventilation distribution in healthy lungs: can reference values be established for electrical impedance tomography parameters? Ann Transl Med. 2021;9(9):789.
Article
Google Scholar
Long Y, Liu DW, He HW, Zhao ZQ. Positive end-expiratory pressure titration after alveolar recruitment directed by electrical impedance tomography. Chin Med J. 2015;128(11):1421–7.
Article
Google Scholar
Zhao Z, Lee LC, Chang MY, Frerichs I, Chang HT, Gow CH, et al. The incidence and interpretation of large differences in EIT-based measures for PEEP titration in ARDS patients. J Clin Monit Comput. 2020;34(5):1005–13.
Article
Google Scholar
Hochhausen N, Kapell T, Durbaum M, Follmann A, Rossaint R, Czaplik M. Monitoring postoperative lung recovery using electrical impedance tomography in post anesthesia care unit: an observational study. J Clin Monit Comput. 2021.
Zhao Z, Pulletz S, Frerichs I, Muller-Lisse U, Moller K. The EIT-based global inhomogeneity index is highly correlated with regional lung opening in patients with acute respiratory distress syndrome. BMC Res Notes. 2014;7:82.
Article
Google Scholar
Yun L, He HW, Moller K, Frerichs I, Liu D, Zhao Z. Assessment of lung recruitment by electrical impedance tomography and oxygenation in ARDS patients. Medicine (Baltimore). 2016;95(22):e3820.
Article
Google Scholar
Wirth S, Kreysing M, Spaeth J, Schumann S. Intraoperative compliance profiles and regional lung ventilation improve with increasing positive end-expiratory pressure. Acta Anaesthesiol Scand. 2016;60(9):1241–50.
Article
CAS
Google Scholar
Lowhagen K, Lundin S, Stenqvist O. Regional intratidal gas distribution in acute lung injury and acute respiratory distress syndrome assessed by electric impedance tomography. Minerva Anestesiol. 2010;76(12):1024–35.
CAS
PubMed
Google Scholar
Karsten J, Voigt N, Gillmann HJ, Stueber T. Determination of optimal positive end-expiratory pressure based on respiratory compliance and electrical impedance tomography: a pilot clinical comparative trial. Biomed Tech (Berl). 2019;64(2):135–45.
Article
Google Scholar
Karsten J, Grusnick C, Paarmann H, Heringlake M, Heinze H. Positive end-expiratory pressure titration at bedside using electrical impedance tomography in post-operative cardiac surgery patients. Acta Anaesthesiol Scand. 2015;59(6):723–32.
Article
CAS
Google Scholar
Guerin C. Individualization of positive end-expiratory pressure setting in patients with acute respiratory distress syndrome under extracorporeal membrane oxygenation. Inputs from electrical impedance tomography. Am J Respir Crit Care Med. 2017;196(4):404–6.
Article
Google Scholar
Karsten J, Stueber T, Voigt N, Teschner E, Heinze H. Influence of different electrode belt positions on electrical impedance tomography imaging of regional ventilation: a prospective observational study. Crit Care. 2016;20:3.
Article
Google Scholar