Luginbühl M, Vuilleumier P, Schumacher P, Stüber F: Anesthesia or sedation for gastroenterologic endoscopies. Curr Opin Anaesthesiol. 2009, 22: 524-531. 10.1097/ACO.0b013e32832dbb7c.
Article
PubMed
Google Scholar
Schulte-Uentrop L, Goepfert MS: Anaesthesia or sedation for MRI in children. Curr Opin Anaesthesiol. 2010, 23: 513-517. 10.1097/ACO.0b013e32833bb524.
Article
PubMed
Google Scholar
Mcfadyen JG, Pelly N, Orr RJ: Sedation and anesthesia for the pediatric patient undergoing radiation therapy. Curr Opin Anaesthesiol. 2011, 24: 433-438. 10.1097/ACO.0b013e328347f931.
Article
PubMed
Google Scholar
Alkire MT, Hudetz AG, Tononi G: Consciousness and anesthesia. Science. 2008, 322: 876-880. 10.1126/science.1149213.
Article
CAS
PubMed
PubMed Central
Google Scholar
Seo J, Lee KJ: Post-translational modifications and their biological functions: proteomic analysis and systematic approaches. J Biochem Mol Biol. 2004, 37: 35-44. 10.5483/BMBRep.2004.37.1.035.
Article
CAS
PubMed
Google Scholar
Mumby M, Brekken D: Phosphoproteomics: new insights into cellular signaling. Genome Biol. 2005, 6: 230-10.1186/gb-2005-6-9-230.
Article
PubMed
PubMed Central
Google Scholar
Kondratyuk T, Rossie S: Depolarization of rat brain synaptosomes increases phosphorylation of voltage-sensitive sodium channels. J Biol Chem. 1997, 272: 16978-16983. 10.1074/jbc.272.27.16978.
Article
CAS
PubMed
Google Scholar
Xie Z, Tanzi RE: Alzheimer’s disease and post-operative cognitive dysfunction. Exp Gerontol. 2006, 41: 346-359. 10.1016/j.exger.2006.01.014.
Article
CAS
PubMed
Google Scholar
Le Freche H, Brouillette J, Fernandez-Gomez FJ, Patin P, Caillierez R, Zommer N, Sergeant N, Buée-Scherrer V, Lebuffe G, Blum D, Buée L: Tau phosphorylation and sevoflurane anesthesia: an association to postoperative cognitive impairment. Anesthesiology. 2012, 116: 779-787. 10.1097/ALN.0b013e31824be8c7.
Article
CAS
PubMed
Google Scholar
Tan W, Cao X, Wang J, Lv H, Wu B, Ma H: Tau hyperphosphorylation is associated with memory impairment after exposure to 1.5% isoflurane without temperature maintenance in rats. Eur J Anaesthesiol. 2010, 27: 835-841. 10.1097/EJA.0b013e32833a6561.
Article
CAS
PubMed
Google Scholar
Izquierdo I, Bevilaqua LR, Rossato JI, Bonini JS, Medina JH, Cammarota M: Different molecular cascades in different sites of the brain control memory consolidation. Trends Neurosci. 2006, 29: 496-505. 10.1016/j.tins.2006.07.005.
Article
CAS
PubMed
Google Scholar
Huguenard JR, Mccormick DA: Thalamic synchrony and dynamic regulation of global forebrain oscillations. Trends Neurosci. 2007, 30: 350-356. 10.1016/j.tins.2007.05.007.
Article
CAS
PubMed
Google Scholar
Alkire MT, Haier RJ, Fallon JH: Toward a unified theory of narcosis: brain imaging evidence for a thalamocortical switch as the neurophysiologic basis of anesthetic-induced unconsciousness. Conscious Cogn. 2000, 9: 370-386. 10.1006/ccog.1999.0423.
Article
CAS
PubMed
Google Scholar
Hernández-Rabaza V, Llorens-Martín M, Velázquez-Sánchez C, Ferragud A, Arcusa A, Gumus HG, Gómez-Pinedo U, Pérez-Villalba A, Roselló J, Trejo JL, Barcia JA, Canales JJ: Inhibition of adult hippocampal neurogenesis disrupts contextual learning but spares spatial working memory, long-term conditional rule retention and spatial reversal. Neuroscience. 2009, 159: 59-68. 10.1016/j.neuroscience.2008.11.054.
Article
PubMed
Google Scholar
Howland JG, Wang YT: Synaptic plasticity in learning and memory: stress effects in the hippocampus. Prog Brain Res. 2008, 169: 145-158.
Article
CAS
PubMed
Google Scholar
Yamasaki H, Labar KS, Mccarthy G: Dissociable prefrontal brain systems for attention and emotion. Proc Natl Acad Sci U S A. 2009, 99: 11447-11451.
Article
Google Scholar
Lambe EK, Aghajanian GK: Hypocretin (orexin) induces calcium transients in single spines postsynaptic to identified thalamocortical boutons in prefrontal slice. Neuron. 2003, 40: 139-150. 10.1016/S0896-6273(03)00598-1.
Article
CAS
PubMed
Google Scholar
Zeeberg BR, Feng W, Wang G, Wang MD, Fojo AT, Sunshine M, Narasimhan S, Kane DW, Reinhold WC, Lababidi S, Bussey KJ, Riss J, Barrett JC, Weinstein JN: GoMiner: a resource for biological interpretation of genomic and proteomic data. Genome Biol. 2003, 4: R28-10.1186/gb-2003-4-4-r28.
Article
PubMed
PubMed Central
Google Scholar
Jang HS, Choi HS, Lee MG: Effects of propofol administration rates on cardiopulmonary function and anaesthetic depth during anaesthetic induction in rats. Vet Anaesth Analg. 2009, 36: 239-245. 10.1111/j.1467-2995.2009.00456.x.
Article
CAS
PubMed
Google Scholar
Larsson JE, Wahlstrom G: Optimum rate of administration of propofol for induction of anaesthesia in rats. Br J Anaesth. 1994, 73: 692-694. 10.1093/bja/73.5.692.
Article
CAS
PubMed
Google Scholar
Fütterer CD, Maurer MH, Schmitt A, Feldmann RE, Kuschinsky W, Waschke KF: Alterations in rat brain proteins after desflurane anesthesia. Anesthesiology. 2004, 100: 302-308. 10.1097/00000542-200402000-00019.
Article
PubMed
Google Scholar
Tsuboko Y, Sakamoto A: Propofol anaesthesia alters the cerebral proteome differently from sevoflurane anaesthesia. Biomed Res. 2001, 32: 55-65.
Article
Google Scholar
Zhang X, Liu Y, Feng C, Yang S, Wang Y, Wu AS, Yue Y: Proteomic profiling of the insoluble fractions in the rat hippocampus post-propofol anesthesia. Neurosci Lett. 2009, 465: 165-170. 10.1016/j.neulet.2009.08.025.
Article
CAS
PubMed
Google Scholar
Kapitein LC, Hoogenraad CC: Which way to go? Cytoskeletal organization and polarized transport in neurons. Mol Cell Neurosci. 2011, 46: 9-20. 10.1016/j.mcn.2010.08.015.
Article
CAS
PubMed
Google Scholar
Gautel M: Cytoskeletal protein kinases: titin and its relations in mechanosensing. Pflugers Arch. 2011, 462: 119-134. 10.1007/s00424-011-0946-1.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fukuda J, Kameyama M, Yamaguchi K: Breakdown of cytoskeletal filaments selectively reduces Na and Ca spikes in cultured mammal neurons. Nature. 1981, 294: 82-85. 10.1038/294082a0.
Article
CAS
PubMed
Google Scholar
Srinivasan Y, Elmer L, Davis J, Bennett V, Angelides K: Ankyrin and spectrin associate with voltage-dependent sodium channels in brain. Nature. 1988, 333: 177-180. 10.1038/333177a0.
Article
CAS
PubMed
Google Scholar
Ren Y, Zhang FJ, Xue QS, Zhao X, Yu BW: Bilateral inhibition of gamma-aminobutyric acid type A receptor function within the basolateral amygdala blocked propofol-induced amnesia and activity-regulated cytoskeletal protein expression inhibition in the hippocampus. Anesthesiology. 2008, 109: 775-781. 10.1097/ALN.0b013e31818a37c4.
Article
CAS
PubMed
Google Scholar
Whittington RA, Virág L, Marcouiller F, Papon MA, El Khoury NB, Julien C, Morin F, Emala CW, Planel E: Propofol directly increases tau phosphorylation. PLoS One. 2011, 6: e16648-10.1371/journal.pone.0016648.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lahiri DK: Apolipoprotein E as a target for developing new therapeutics for Alzheimer’s disease based on studies from protein, RNA, and regulatory region of the gene. J Mol Neurosci. 2004, 23: 225-233. 10.1385/JMN:23:3:225.
Article
CAS
PubMed
Google Scholar
Takeda M, Martínez R, Kudo T, Tanaka T, Okochi M, Tagami S, Morihara T, Hashimoto R, Cacabelos R: Apolipoprotein E and central nervous system disorders: reviews of clinical findings. Psychiatry Clin Neurosci. 2010, 64: 592-607. 10.1111/j.1440-1819.2010.02148.x.
Article
CAS
PubMed
Google Scholar
Harris FM, Brecht WJ, Xu Q, Tesseur I, Kekonius L, Wyss-Coray T, Fish JD, Masliah E, Hopkins PC, Scearce-Levie K, Weisgraber KH, Mucke L, Mahley RW, Huang Y: Carboxyl-terminal-truncated apolipoprotein E4 causes Alzheimer’s disease-like neurodegeneration and behavioral deficits in transgenic mice. Proc Natl Acad Sci U S A. 2003, 100: 10966-10971. 10.1073/pnas.1434398100.
Article
CAS
PubMed
PubMed Central
Google Scholar
Brecht WJ, Harris FM, Chang S, Tesseur I, Yu GQ, Xu Q, Dee Fish J, Wyss-Coray T, Buttini M, Mucke L, Mahley RW, Huang Y: Neuron-specific apolipoprotein e4 proteolysis is associated with increased tau phosphorylation in brains of transgenic mice. J Neurosci. 2004, 24: 2527-2534. 10.1523/JNEUROSCI.4315-03.2004.
Article
CAS
PubMed
Google Scholar
Faingold CL, N’Gouemo P, Riaz A: Ethanol and neurotransmitter interactions–from molecular to integrative effects. Prog Neurobiol. 1998, 55: 509-535. 10.1016/S0301-0082(98)00027-6.
Article
CAS
PubMed
Google Scholar
Ikonomidou C, Bosch F, Miksa M, Bittigau P, Vöckler J, Dikranian K, Tenkova TI, Stefovska V, Turski L, Olney JW: Blockade of NMDA receptors and apoptotic neurodegeneration in the developing brain. Science. 1999, 283: 70-74. 10.1126/science.283.5398.70.
Article
CAS
PubMed
Google Scholar
Wozniak DF, Hartman RE, Boyle MP, Vogt SK, Brooks AR, Tenkova T, Young C, Olney JW, Muglia LJ: Apoptotic neurodegeneration induced by ethanol in neonatal mice is associated with profound learning/memory deficits in juveniles followed by progressive functional recovery in adults. Neurobiol Dis. 2004, 17: 403-414. 10.1016/j.nbd.2004.08.006.
Article
CAS
PubMed
Google Scholar
Tsai G, Gastfriend DR, Coyle JT: The glutamatergic basis of human alcoholism. Am J Psychiatry. 1995, 152: 332-340.
Article
CAS
PubMed
Google Scholar
Hoffert JD, Pisitkun T, Wang G, Shen RF, Knepper MA: Quantitative phosphoproteomics of vasopressin-sensitive renal cells: regulation of aquaporin-2 phosphorylation at two sites. Proc Natl Acad Sci U S A. 2006, 103: 7159-7164. 10.1073/pnas.0600895103.
Article
CAS
PubMed
PubMed Central
Google Scholar