Previous studies have focused on the utility of midazolam, its side effects, and its comparison with other drugs such as dexmedetomidine, propofol, and opioids. However, to date, no study has evaluated the effect of external environmental factors on patient sedation, which is the main purpose of sedative drugs. This is the first study to compare the requirement of sedatives while controlling external environmental factors. In this study, we investigated whether blocking some external environmental factors (bright surgical lights) could reduce the amount of midazolam required for adequate sedation in patients undergoing surgery under spinal anesthesia. The results of this study show that the masked group required a significantly lower dose of midazolam to reach an MOAA/S score of 3 compared to the control group. When 1 mg of midazolam was administered every 5 min, the doses of midazolam required to reach a MOAA/S score of 3 were 2.8 mg and 3.7 mg in the masked group and the control group, respectively, a difference of about 0.9 mg. We found that the midazolam dose could be reduced by controlling the amount of bright light in the environment. Although there were no significant differences between groups based on BIS measurements, a faster onset and a longer duration of sedation were observed in the masked group than in the control group. This suggests the need for further studies with larger sample sizes.
Although midazolam is the most frequently used sedative for minor surgeries or procedures, it is difficult to titrate the ideal dose because of large individual variability in responses [11]. According to certain recommendations, midazolam is usually administered intravenously at incrementally increasing doses of 0.5 mg or 1 mg until the desired degree of sedation is achieved [12]. This incremental approach is used to avoid serious side effects, such as hypoventilation, respiratory depression, cardiovascular suppression, and delirium, which accompany midazolam overdose [4, 5]. Moreover, the elderly, obese, and patients with hepatic or renal disease are at higher risk of these side effects [13,14,15], and midazolam also has synergistic effects with other drugs, such as hypnotics or opioids [16, 17]. Our study results could provide a good guide for safety improvements in future midazolam use.
In terms of the onset time to reach a BIS ≤ 80, the masked group and the control group required 12.3 min and 14.7 min, respectively, which was faster than the times required to reach an MOAA/S score of 3 of 13.8 min and 18.3 min, respectively. This is probably because a BIS of 80 does not reflect an MOAA/S score of 3. According to the manufacturer’s report, a BIS of 80 corresponds to “Light/moderate sedation, may respond to loud commands or mild prodding/shaking,” which is similar to the MOAA/S score of 3 [18]. However, when we compared each MOAA/S score with the BIS values in this study, a BIS of 80 was closer to a MOAA/S score of 4. The average BIS values of those with MOAA/S scores of 5, 4, and 3 were 89.3, 80.3, and 70.0, respectively. To date, no large-scale study has directly compared the relationship between BIS values and MOAA/S scores.
Intrathecal local anesthetic appears to stop spreading 15‒25 min after injection [12, 19, 20]. Thereafter, changes in blood pressure, pulse rate, and respiratory rate are thought to be mainly related to the effects of midazolam if other variables are controlled [21]. The incidence of these side effects was higher in the control group than in the masked group, but the difference was not significant. Since the number of patients with these side effects in our study was small, larger studies are needed. There was no significant difference in patient satisfaction with sedation between the two groups. The reasons for low satisfaction were frequent blood pressure measurements, fixed arms, noise, bright lights, etc. In rare cases, some patients felt uncomfortable with the eye mask and had a fear of covering their eyes.
This study had several limitations. Above all, our study was not a blinded trial, as the researcher was inevitably able to distinguish whether the patient was wearing an eye mask or not. Therefore, it was not possible to completely prevent the risk of bias, especially detection bias. In addition, the type of surgery differed across patients, and variables such as noise were not controlled for. We only classified the MOAA/S scores of 5, 4, and 3, but not those < 3, for the following reasons: first, we did not want to harm the patient with unnecessarily deep sedation beyond the light/moderate sedation required. Second, other stimuli, such as speaking loudly, prodding, or shaking, to classify MOAA/S scores < 3, may have affected the results by interfering with the patient’s sedation. Third, there was a limitation in evaluating the response of the patient’s eye opening in the masked group, and thus the judgment of the MOAA/S score could have differed between the two groups.