After institutional ethics committee approval (IRB00006761-2012045, Medical Ethics Committee of Peking University Third Hospital), informed written consent was obtained from all patients. We enrolled patients between December 2013 and December 2014. Inclusion criteria were: age 18–70 years; American Society of Anesthesiologists (ASA) physical status score I–III; requirement for preoperative neck immobilization with a hard plastic collar; planned urgent or elective cervical spine surgery for cervical trauma or severe cervical spondylosis. Exclusion criteria were: pregnancy; use of an α2 adrenoreceptor agonist or antagonist within the previous 14 days; known or admitted alcohol or drug misuse; uncontrolled seizure disorder; history of unstable angina or myocardial infarction; resting heart rate (HR) <50 min−1; and complete heart block.
Patients were assigned by a computer-generated randomization schedule to receive sedation with dexmedetomidine (Group D) or remifentanil (Group R). A research nurse generated the allocation sequence, enrolled participants and assigned them to their groups. While one anesthesiologist prepared and infused the study drug, another anesthesiologist experienced in the use of the SOS was in charge of airway anesthesia and intubation. Another research nurse assessed the patients, recorded intubation time and followed up the patients postoperatively. The participants, the intubating anesthesiologist and the nurse who was responsible for assessment and follow up were blinded to the group allocation.
All patients received a bolus of intravenous scopolamine 0.3 mg as premedication and oxygen by nasal cannula (3 L · min−1). Vital signs, including systolic blood pressure (SBP), diastolic blood pressure (DBP), HR and pulse oxygen saturation (SpO2) were recorded at baseline and every 2 min until the completion of intubation. The time required for intubation (from the first insertion of the SOS to confirming intubation with capnography) and the number of attempts was also recorded.
All patients received the study drug via an Alaris PK Syringe Pump (Care Fusion, Becton Dickinson, Franklin Lakes, NJ). The study drug was diluted to 50 mL with a 0.9 % NaCl solution, and the infusion was started 10 min before airway anesthesia and continued throughout airway management and intubation. Group D received a loading dose of 1.0 μg · kg−1 dexmedetomidine over 10 min followed by a continuous infusion of 0.7 μg · kg−1 · h−1 [12]. Group R received a target-controlled infusion of remifentanil using the Minto three compartment model. The initial target was set at 2.5 ng · ml−1 and increased to 3 ng · ml−1 10 min later. In both groups, the drug infusion was continued until confirmation of successful intubation.
During application of topical airway anesthesia and intubation, the cervical collar was not released. Airway anesthesia began 10 min after the start of sedative drug infusion. Lidocaine 200 mg was administered through a laryngotracheal mucosa atomization device (LMA MADgic, Teleflex Medical, Athlone, Republic of Ireland) to the mouth, larynx and glottis.
The application of topical anesthesia to the upper airway took no less than 10 min. The patient’s sedation level was assessed using the Ramsay Sedation Scale (RSS) at baseline, 10 min after the drug infusion had started, and every 3 min during airway anesthesia. Any patient with an RSS <2 was given a rescue bolus of intravenous midazolam 0.5 mg until an RSS of 2 was achieved [12].
A SOS preloaded with an endotracheal tube (ETT) was inserted over the tongue. The supine patient was asked to take deep breaths. The epiglottis and the glottic opening were identified via the eyepiece. Once the vocal cords were visualized, the tip of the ETT was advanced during inspiration. After the tip of ETT had entered the trachea, the SOS was withdrawn. Intubation score was assessed using a 5-point scale during SOS endoscopy and intubation (1, no movement; 2, grimacing; 3, mild cough; 4, major limb movement; 5, prolonged coughing) [13]. If the intubation score was >2 during endoscopy, the SOS was withdrawn and 3 mL 2 % lidocaine was sprayed on to the glottis via the LMA MADgic. The patient’s sedation level was reassessed and rescue midazolam 0.5 mg was given repeatedly in 1-min intervals until RSS ≥2.
The SOS was withdrawn if the patient’s SpO2 was ≤92 % during endoscopy. Oxygen was given via facemask (5 L · min−1) and the patient was instructed to take deep breaths. When SpO2 recovered to ≥95 %, another intubation attempt was made.
Immediately after intubation, end tidal CO2 concentration (first breath) was recorded. Tolerance of the ETT was assessed using a 3-point scale (1, well tolerated and cooperative; 2, mild coughing and/or grimacing but still cooperative; 3, severe coughing and/or agitated and not cooperative) [15]. General anesthesia was induced immediately after assessment of ETT tolerance. Infusion of the study drug was discontinued upon completion of induction of general anesthesia.
At the 24-h postoperative follow-up visit, patients were interviewed to assess their recall of pre-anesthesia events, administration of topical anesthesia, endoscopy and intubation, and whether there had been complications (for example, injury to the teeth, lip or oral mucosa, sore throat or hoarseness). Patient satisfaction with the whole procedure was assessed on an 11-point numeric rating scale (0, completely dissatisfied; 10, completely satisfied).
The primary efficacy endpoint of this study was the proportion of patients intubated successfully at the first attempt. Based on the findings of a previous study, in which the first attempt success rates using dexmedetomidine versus remifentanil in AFOI were 38 and 76 % respectively [10], we calculated that a sample size of 64 patients would be sufficient to detect a difference between the treatment groups with a power of 0.8 and a significance level of 0.05. Considering possible 5 % dropout, the sample size was set at 68.
We used SPSS 13.0 software (SPSS, Chicago, IL) for statistical analyses. Continuous variables are expressed as mean ± standard deviation, and were compared within groups using the paired t-test and between groups using the independent t-test. The chi-squared test or Fisher’s exact test were used to compare categorical data between the groups. Intubation conditions and tolerance score were analyzed using the independent samples Mann–Whitney U test. Blood pressure and HR at different time points were compared using two-way repeated-measures analysis of variance. A P value <0.05 was regarded as statistically significant.