Rask-Madsen C, King GL. Vascular complications of diabetes: mechanisms of injury and protective factors. Cell Metab. 2013;17(1):20–33.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huynh K, Bernardo BC, McMullen JR, et al. Diabetic cardiomyopathy: mechanisms and new treatment strategies targeting antioxidant signaling pathways. Pharmacol Ther. 2014;142(3):375–415.
Article
CAS
PubMed
Google Scholar
Jiwani A, Marseille E, Lohse N, et al. Gestational diabetes mellitus: results from a survey of country prevalence and practices. J Matern Fetal Neonatal Med. 2012;25(6):600–10.
Article
PubMed
Google Scholar
Danaei G, Finucane MM, Lu Y, et al. National, regional, and global trends in fasting plasma glucose and diabetes prevalence since 1980: systematic analysis of health examination surveys and epidemiological studies with 370 country-years and 2·7 million participants. Lancet. 2011;378(9785):31–40.
Article
CAS
PubMed
Google Scholar
Naito R, Miyauchi K. Coronary artery disease and type 2 diabetes mellitus current treatment strategies and future perspective. Int Heart J. 2017;58(4):17–191.
Article
Google Scholar
Fleisher LA, Beckman JA, Brown KA, et al. ACC/AHA 2007 guidelines on perioperative cardiovascular evaluation and care for noncardiac surgery: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Revise the 2002 Guidelines on Perioperative Cardiovascular Evaluation for Noncardiac Surgery). Circulation. 2007;116(17):1971–96.
Article
PubMed
Google Scholar
Hink U, Li H, Mollnau H, et al. Mechanisms underlying endothelial dysfunction in diabetes mellitus. Circ Res. 2001;88(2):e14–22.
Article
CAS
PubMed
Google Scholar
Kanai F, Ito K, Todaka M, et al. Insulin-stimulated GLUT4 translocation is relevant to the phosphorylation of IRS-1 and the activity of PI3 kinase. Biochem Biophys Res Commun. 1993;195(2):762–8.
Article
CAS
PubMed
Google Scholar
Okada T, Kawano Y, Sakakibara T, et al. Essential role of phosphatidylinositol 3-kinase in insulin-induced glucose transport and antilipolysis in rat adipocytes. Studies with a selective inhibitor wortmannin. J Biol Chem. 1994;269(5):3568–73.
Article
CAS
PubMed
Google Scholar
Braccini L, Ciraolo E, Campa CC, et al. PI3K-C2γ is a Rab5 effector selectively controlling endosomal Akt2 activation downstream of insulin signalling. Nat Commun. 2015;6(1):1–15.
Article
Google Scholar
Dimmeler S, Fleming I, Fisslthaler B, et al. Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation. Nature. 1999;399(6736):601–5.
Article
CAS
PubMed
Google Scholar
Cantley LC. The phosphoinositide 3-kinase pathway. Science. 2002;296(5573):1655–7.
Article
CAS
PubMed
Google Scholar
Maffei A, Lembo G, Carnevale D. PI3Kinases in diabetes mellitus and its related complications. Int J Mol Sci. 2018;19(12):4098.
Article
PubMed Central
Google Scholar
Bathina S, Das UN. Dysregulation of PI3K-Akt-mTOR pathway in brain of streptozotocin-induced type 2 diabetes mellitus in Wistar rats. Lipids Health Dis. 2018;17(1):1–11.
Article
Google Scholar
Torres RC, Magalhães NS, e Silva PMR, et al. Activation of PPAR-γ reduces HPA axis activity in diabetic rats by up-regulating PI3K expression. Exp Mol Pathol. 2016;101(2):290–301.
Article
CAS
PubMed
Google Scholar
Kajikawa M, Noma K, Maruhashi T, et al. Rho-associated kinase activity is a predictor of cardiovascular outcomes. Hypertension. 2014;63(4):856–64.
Article
CAS
PubMed
Google Scholar
Ocaranza MP, Valderas P, Moya J, et al. Rho kinase cascade activation in circulating leukocytes in patients with diabetes mellitus type 2. Cardiovasc Diabetol. 2020;19:1–12.
Article
Google Scholar
Soga J, Noma K, Hata T, et al. Rho-associated kinase activity, endothelial function, and cardiovascular risk factors. Arterioscler Thromb Vasc Biol. 2011;31(10):2353–9.
Article
CAS
PubMed
Google Scholar
Akata T, Warltier DC. General anesthetics and vascular smooth muscle: direct actions of general anesthetics on cellular mechanisms regulating vascular tone. Anesthesiology. 2007;106(2):365–91.
Article
PubMed
Google Scholar
Yu J, Ogawa K, Tokinaga Y, et al. Sevoflurane inhibits guanosine 5′-[γ-thio] triphosphate–stimulated, Rho/Rho-kinase–mediated contraction of isolated rat aortic smooth muscle. Anesthesiology. 2003;99(3):646–51.
Article
CAS
PubMed
Google Scholar
Yu J, Tokinaga Y, Ogawa K, et al. Sevoflurane inhibits angiotensin II–induced, protein kinase C–mediated but not Ca2+-elicited contraction of rat aortic smooth muscle. Anesthesiology. 2004;100(4):879–84.
Article
CAS
PubMed
Google Scholar
Qi F, Ogawa K, Tokinaga Y, et al. Volatile anesthetics inhibit angiotensin II-induced vascular contraction by modulating myosin light chain phosphatase inhibiting protein, CPI-17 and regulatory subunit, MYPT1 phosphorylation. Anesth Analg. 2009;109(2):412–7.
Article
CAS
PubMed
Google Scholar
Yang S, Wu Q, Huang S, et al. Sevoflurane and isoflurane inhibit KCl-induced Class II phosphoinositide 3-kinase α subunit mediated vasoconstriction in rat aorta. BMC Anesthesiol. 2015;16(1):63.
Article
Google Scholar
Miyamoto Y, Feng GG, Satomi S, et al. Phosphatidylinositol 3-kinase inhibition induces vasodilator effect of sevoflurane via reduction of Rho kinase activity. Life Sci. 2017;177:20–6.
Article
CAS
PubMed
Google Scholar
Fujii K, Ogawa K, Tokinaga Y, et al. Sevoflurane does not alter norepinephrine-induced intracellular Ca2+ changes in the diabetic rat aorta. Can J Anaesth. 2010;57(12):1095–101.
Article
PubMed
Google Scholar
Negoro T, Mizumoto K, Ogawa K, et al. Effects of isoflurane and sevoflurane anesthesia on arteriovenous shunt flow in the lower limb of diabetic patients without autonomic neuropathy. Anesthesiology. 2007;107(1):45–52.
Article
CAS
PubMed
Google Scholar
Kawano K, Hirashima T, Mori S, et al. OLETF (Otsuka Long-Evans Tokushima Fatty) rat: a new NIDDM rat strain. Diabetes Res Clin Pract. 1994;24:S317–20.
Article
PubMed
Google Scholar
National Research Council (US) Committee for the Update of the Guide for the Care and Use of Laboratory Animals. Guide for the care and use of laboratory animals. 8th ed. Washington (DC): National Academies Press (US); 2011.
Google Scholar
Saeedi P, Petersohn I, Salpea P, et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: results from the International Diabetes Federation Diabetes Atlas. Diabetes Res Clin Pract. 2019;157:107843.
Article
PubMed
Google Scholar
Islam MZ, Van Dao C, Miyamoto A, et al. Rho-kinase and the nitric oxide pathway modulate basilar arterial reactivity to acetylcholine and angiotensin II in streptozotocin-induced diabetic mice. Naunyn Schmiedebergs Arch Pharmacol. 2017;390(9):929–38.
Article
CAS
PubMed
Google Scholar
Hofni A, Messiha BAS, Mangoura SA. Fasudil ameliorates endothelial dysfunction in streptozotocin-induced diabetic rats: a possible role of Rho kinase. Naunyn Schmiedebergs Arch Pharmacol. 2017;390(8):801–11.
Article
CAS
PubMed
Google Scholar
Olver TD, Grunewald ZI, Ghiarone T, et al. Persistent insulin signaling coupled with restricted PI3K activation causes insulin-induced vasoconstriction. Am J Physiol Heart Circ Physiol. 2019;317(5):H1166–72.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu Y, Wei J, Ma KT, et al. Carvacrol protects against diabetes-induced hypercontractility in the aorta through activation of the PI3K/Akt pathway. Biomed Pharmacother. 2020;125:109825.
Article
CAS
PubMed
Google Scholar
Ruitenbeek AG, Van Der Cammen TJM, Van Den Meiracker AH, et al. Age and blood pressure levels modify the functional properties of central but not peripheral arteries. Angiology. 2008;59(3):290–5.
Article
PubMed
Google Scholar
Vanhoutte PM, Shimokawa H, Feletou M, Tang EH. Endothelial dysfunction and vascular disease - a 30th anniversary update. Acta Physiol (Oxf). 2017;219(1):22–96. https://doi.org/10.1111/apha.12646. Epub 2016 Jan. 25 PMID: 26706498.
Article
CAS
Google Scholar
Budzyn K, Marley PD, Sobey CG. Opposing roles of endothelial and smooth muscle phosphatidylinositol 3-kinase in vasoconstriction: effects of rho-kinase and hypertension. J Pharmacol Exp Ther. 2005;313(3):1248–53.
Article
CAS
PubMed
Google Scholar
Eger EI II. The pharmacology of inhaled anesthetics[C]//Seminars in anesthesia, perioperative medicine and pain. WB Saunders. 2005;24(2):89–100.
CAS
Google Scholar