Calleja JL, Delgado S, del Val A, Hervás A, Larraona JL, Terán Á, et al. Ferric carboxymaltose reduces transfusions and hospital stay in patients with colon cancer and anemia. Int J Color Dis. 2016;31(3):543–51. https://doi.org/10.1007/s00384-015-2461-x.
Article
Google Scholar
Hou D, Dai J, Deng Z, Yan D. Effects of hemoglobin level and perioperative blood transfusion on prognosis of patients with clon cancer. Modern Oncol. 2018;26(07):1070–4.
Google Scholar
Ceanga AI, Ceanga M, Eveslage M, Herrmann E, Fischer D, Haferkamp A, et al. Preoperative anemia and extensive transfusion during stay-in-hospital are critical for patient's mortality: a retrospective multicenter cohort study of oncological patients undergoing radical cystectomy [J]. Transf Apheresis Sci. 2018;57(6):739–45.
Article
Google Scholar
Ness PM, Triulzi DJ, Carson JL. Adverse effects of red-cell transfusion [J]. N Engl J Med. 2018;378(1):97–8. https://doi.org/10.1056/NEJMc1714159.
Article
PubMed
Google Scholar
Aquina CT, Blumberg N, Becerra AZ, Boscoe FP, Schymura MJ, Noyes K, et al. Association among blood transfusion, Sepsis, and decreased long-term survival after Colon Cancer resection [J]. Ann Surg. 2017;266(2):311–7. https://doi.org/10.1097/SLA.0000000000001990.
Article
PubMed
Google Scholar
Hart S, Cserti-Gazdewich CM, McCluskey SA. Red cell transfusion and the immune system. Anaesthesia. 2015;70(s1):38–45. https://doi.org/10.1111/anae.12892.
Article
PubMed
Google Scholar
Liu X, Ma M, Huang H, Wang Y. Effect of perioperative blood transfusion on prognosis of patients with gastric cancer: a retrospective analysis of a single center database. BMC Cancer. 2018;18(1):649. https://doi.org/10.1186/s12885-018-4574-4.
Article
PubMed
PubMed Central
Google Scholar
Pang Q, An R, Liu H. Perioperative transfusion and the prognosis of colorectal cancer surgery: a systematic review and meta-analysis [J]. World J Surg Oncol. 2019;17(1):7. https://doi.org/10.1186/s12957-018-1551-y.
Article
PubMed
PubMed Central
Google Scholar
Cata JP, Wang H, Gottumukkala V, Reuben J, Sessler DI. Inflammatory response, immunosuppression, and cancer recurrence after perioperative blood transfusions. Br J Anaesth. 2013;110(5):690–701. https://doi.org/10.1093/bja/aet068.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shevach EM. Mechanisms of foxp3+ T regulatory cell-mediated suppression. Immunity. 2009;30(5):636–45. https://doi.org/10.1016/j.immuni.2009.04.010.
Article
CAS
PubMed
Google Scholar
Pereira LMS, Gomes STM, Ishak R, Vallinoto ACR. Regulatory T cell and Forkhead box protein 3 as modulators of immune homeostasis [J]. Front Immunol. 2017;8:605. https://doi.org/10.3389/fimmu.2017.00605.
Article
CAS
PubMed
PubMed Central
Google Scholar
Torgerson TR, Ochs HD. Immune dysregulation, polyendocrinopathy, enteropathy, X-linked: Forkhead box protein 3 mutations and lack of regulatory T cells. J Allergy Clin Immunol. 2007;120(4):744–50. https://doi.org/10.1016/j.jaci.2007.08.044.
Article
CAS
PubMed
Google Scholar
Tao J, Cheng M, Tang J, Liu Q, Pan F, Li X. Foxp3, regulatory T cell, and autoimmune diseases. Inflammation. 2017;40(1):328–39. https://doi.org/10.1007/s10753-016-0470-8.
Article
CAS
PubMed
Google Scholar
Fontenot JD, Gavin MA, Rudensky AY. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol. 2003;4(4):330–6. https://doi.org/10.1038/ni904.
Article
CAS
PubMed
Google Scholar
Liu W, Putnam AL, Xu-Yu Z, Szot GL, Lee MR, Zhu S, et al. CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4+ T reg cells. J Exp Med. 2006;203(7):1701–11. https://doi.org/10.1084/jem.20060772.
Article
CAS
PubMed
PubMed Central
Google Scholar
Watkins WM. The ABO blood group system: historical background. Transfus Med. 2010;11(4):243–65.
Article
Google Scholar
Wang Z, Liu L, Ji J, Zhang J, Yan M, Zhang J, et al. ABO blood group system and gastric Cancer: a case-control study and meta-analysis. Int J Mol Sci. 2012;13(10):13308–21. https://doi.org/10.3390/ijms131013308.
Article
CAS
PubMed
PubMed Central
Google Scholar
Iodice S, Maisonneuve P, Botteri E, Sandri MT, Lowenfels AB. ABO blood group and cancer. Eur J Cancer. 2010;46(18):3345–50. https://doi.org/10.1016/j.ejca.2010.08.009.
Article
CAS
PubMed
Google Scholar
Zhang B, He N, Huang Y, Song F, Chen K. ABO blood groups and risk of Cancer: a systematic review and meta-analysis. Asian Pac J Cancer Prevent. 2014;15(11):4643–50. https://doi.org/10.7314/APJCP.2014.15.11.4643.
Article
Google Scholar
Franchini M, Lippi G. The intriguing relationship between the ABO blood group, cardiovascular disease, and cancer. BMC Med. 2015;13(1):7. https://doi.org/10.1186/s12916-014-0250-y.
Article
PubMed
PubMed Central
Google Scholar
Fagherazzi G, Gusto G, Clavel-Chapelon F, Balkau B, Bonnet F. ABO and rhesus blood groups and risk of type 2 diabetes: evidence from the large E3N cohort study. Diabetologia. 2015;58(3):519–22. https://doi.org/10.1007/s00125-014-3472-9.
Article
CAS
PubMed
Google Scholar
Yu J, Xie Y, Yiri D, Shi H, Chen D, Han Z. Effects of ABO blood group factors on erythrocyte suspension transfusion reactions. Chin J Anesthesiol. 2015;12:1425–7.
Google Scholar
Shi H, Xuejiang D, Wu F, Hu Y, Xv Z, Mi W. Dexmedetomidine improves early postoperative neurocognitive disorder in elderly male patients undergoing thoracoscopic lobectomy [J]. Exp Ther Med. 2020;20(4):3868–77. https://doi.org/10.3892/etm.2020.9113.
Article
CAS
PubMed
PubMed Central
Google Scholar
American Society of Anesthesiologists Task Force on Perioperative Blood Management. Practice guidelines for perioperative blood management: an updated report by the American Society of Anesthesiologists Task Force on Perioperative Blood Management*. Anesthesiology. 2015;122(2):241–75.
Ministry of Health. Technical specifications for clinical blood transfusion. Chin Hosp. 2000;4(6):1–11.
Yuan JS, Reed A, Chen F, Stewart CN Jr. Statistical analysis of real-time PCR data. BMC Bioinform. 2006;7(1):85. https://doi.org/10.1186/1471-2105-7-85.
Article
CAS
Google Scholar
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods. 2001;25(4):402–8. https://doi.org/10.1006/meth.2001.1262.
Article
CAS
PubMed
Google Scholar
Geng Y, Wang H, Lu C, Li Q, Xu B, Jiang J, et al. Expression of costimulatory molecules B7-H1, B7-H4 and Foxp3+Tregs in gastric cancer and its clinical significance. Int J Clin Oncol. 2015;20(2):273–81. https://doi.org/10.1007/s10147-014-0701-7.
Article
CAS
PubMed
Google Scholar
Ganapathi SK, Beggs AD, Hodgson SV, Kumar D. Expression and DNA methylation of TNF, IFNG and FOXP3 in colorectal cancer and their prognostic significance. Br J Cancer. 2014;111(8):1581–9. https://doi.org/10.1038/bjc.2014.477.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wolf D, Sopper S, Pircher A, Gastl G, Wolf AM. Treg(s) in Cancer: friends or foe? J Cell Physiol. 2015;230(11):2598–605. https://doi.org/10.1002/jcp.25016.
Article
CAS
PubMed
Google Scholar
Shevach EM, Thornton AM. tTregs, pTregs, and iTregs: similarities and differences. Immunol Rev. 2014;259(1):88–102. https://doi.org/10.1111/imr.12160.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen W, Jin W, Hardegen N, Lei KJ, Li L, Marinos N, et al. Conversion of peripheral CD4+CD25- naive T cells to CD4+CD25+ regulatory T cells by TGF-β induction of transcription factor foxp3. J Exp Med. 2003;198(12):1875–86. https://doi.org/10.1084/jem.20030152.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bower MR, Ellis SF, Scoggins CR, McMasters KM, Martin RC. Phase II comparison study of intraoperative autotransfusion for major oncologic procedures. Ann Surg Oncol. 2011;18(1):166–73. https://doi.org/10.1245/s10434-010-1228-4.
Article
PubMed
Google Scholar
Amico F, Briggs G, Balogh ZJ. Transfused trauma patients have better outcomes when transfused with blood components from young donors. Med Hypotheses. 2019;122:141–6. https://doi.org/10.1016/j.mehy.2018.11.016.
Article
PubMed
Google Scholar
Mouw TJ, Lu J, Woody-Fowler M, Ashcraft J, Valentino J, DiPasco P, et al. Morbidity and mortality of synchronous hepatectomy with cytoreductive surgery/hyperthermic intraperitoneal chemotherapy (CRS/HIPEC)[J]. J Gastroin Oncol. 2018;9(5):828–32. https://doi.org/10.21037/jgo.2018.06.04.
Article
Google Scholar
Landers DF, Hill GE, Wong KC, Fox IJ. Blood transfusion-induced immunomodulation. Anesth Analg. 1996;82(1):187–204. https://doi.org/10.1097/00000539-199601000-00035.
Article
CAS
PubMed
Google Scholar
Youssef LA, Spitalnik SL. Transfusion-related immunomodulation: a reappraisal. Curr Opin Hematol. 2017;24(6):551–7. https://doi.org/10.1097/MOH.0000000000000376.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sahu S, Hemlata H, Verma A. Adverse events related to blood transfusion. Indian J Anaesth. 2014;58(5):543–51. https://doi.org/10.4103/0019-5049.144650.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cata JP, Gottumukkala V. Blood transfusion practices in cancer surgery. Indian J Anaesth. 2014;58(5):637–42. https://doi.org/10.4103/0019-5049.144675.
Article
PubMed
PubMed Central
Google Scholar
Danesh A, Inglis HC, Jackman RP, Wu S, Deng X, Muench MO, et al. Exosomes from red blood cell units bind to monocytes and induce proinflammatory cytokines, boosting T-cell responses in vitro. Blood. 2013;123(5):687–96. https://doi.org/10.1182/blood-2013-10-530469.
Article
CAS
PubMed
Google Scholar
Greenwell P. Blood group antigens: molecules seeking a function? Glycoconj J. 1997;14(2):159–73. https://doi.org/10.1023/A:1018581503164.
Article
CAS
PubMed
Google Scholar