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Abstract 

Background:  ICU operational conditions may contribute to cognitive overload and negatively impact on clinical 
decision making. We aimed to develop a quantitative model to investigate the association between the operational 
conditions and the quantity of medication orders as a measurable indicator of the multidisciplinary care team’s cogni-
tive capacity.

Methods:  The temporal data of patients at one medical ICU (MICU) of Mayo Clinic in Rochester, MN between Febru-
ary 2016 to March 2018 was used. This dataset includes a total of 4822 unique patients admitted to the MICU and a 
total of 6240 MICU admissions. Guided by the Systems Engineering Initiative for Patient Safety model, quantifiable 
measures attainable from electronic medical records were identified and a conceptual framework of distributed cog-
nition in ICU was developed. Univariate piecewise Poisson regression models were built to investigate the relationship 
between system-level workload indicators, including patient census and patient characteristics (severity of illness, 
new admission, and mortality risk) and the quantity of medication orders, as the output of the care team’s decision 
making.

Results:  Comparing the coefficients of different line segments obtained from the regression models using a general-
ized F-test, we identified that, when the ICU was more than 50% occupied (patient census > 18), the number of medi-
cation orders per patient per hour was significantly reduced (average = 0.74; standard deviation (SD) = 0.56 vs. aver-
age = 0.65; SD = 0.48; p < 0.001). The reduction was more pronounced (average = 0.81; SD = 0.59 vs. average = 0.63; 
SD = 0.47; p < 0.001), and the breakpoint shifted to a lower patient census (16 patients) when at a higher presence of 
severely-ill patients requiring invasive mechanical ventilation during their stay, which might be encountered in an ICU 
treating patients with COVID-19.

Conclusions:  Our model suggests that ICU operational factors, such as admission rates and patient severity of illness 
may impact the critical care team’s cognitive function and result in changes in the production of medication orders. 
The results of this analysis heighten the importance of increasing situational awareness of the care team to detect and 
react to changing circumstances in the ICU that may contribute to cognitive overload.
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Background
An intensive care unit (ICU) is a complex and dynamic 
socio-technical system, which imposes a highly challeng-
ing work environment on care providers both physically 

Open Access

*Correspondence:  xiang.zhong@ise.ufl.edu
1 Department of Industrial and Systems Engineering, University of Florida, 
482 Weil Hall, P.O. Box 116595, Gainesville, FL 32611‑6595, USA
Full list of author information is available at the end of the article
This study was performed at the University of Florida using deidentified 
data collected from Mayo Clinic Rochester, MN.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12871-021-01548-7&domain=pdf


Page 2 of 13Park et al. BMC Anesthesiology           (2022) 22:10 

and emotionally [1]. To deliver critical care, multidisci-
plinary medical professionals (e.g., intensivists, nurses, 
advanced practice providers, pharmacists, and respira-
tory therapists) collaborate as a hierarchical team and 
make team-based clinical decisions [2, 3]. However, lit-
tle is known about the cognitive capacity of the care 
team to deliver quality and timely care services, and the 
operational and patient factors that lead to cognitive 
overload, negatively impacting decision making [4]. Both 
the intense physical task load (e.g., frequent bedside vis-
its, invasive interventions), and the increasing amount 
of patient data and information add cognitive burden to 
the care team. Patient data and information are critical as 
they serve as the input for clinical decision making; how-
ever, they could paradoxically hinder the team’s cognitive 
function [5, 6]. As the care team reaches the cognitive 
capacity limit, the quality and the timeliness of the clini-
cal decisions might be impaired, which could result in 
diagnostic delays and errors [7–12]. The COVID-19 pan-
demic has further exacerbated the risk as many patients 
with complex conditions are admitted into ICUs, and 
hospitals have been struggling to expand ICU capacity to 
accommodate the pandemic demand surge [13, 14].

Systems engineers have developed frameworks, e.g., 
Failure Modes and Effects Analysis (FMEA) [15], and 
Systems Engineering Initiative for Patient Safety (SEIPS) 
[16], to analyze systems and system failures. FMEA is a 
risk assessment method for identifying and mitigating 
potential failures in systems. SEIPS is a framework for 
understanding the structures, processes, outcomes, and 
their relationships in healthcare systems. These frame-
works facilitate the investigation of complex adaptive 
systems that consist of convoluted interactions among 
system components over time. For example, FMEA has 
been utilized to analyze systems across industries includ-
ing healthcare [17, 18] and SEIPS has recently drawn 
much attention to investigating post-pandemic health-
care systems [19, 20]. Inspired by the SEIPS framework, 
our central hypothesis is that clinical decision making in 
ICUs by the multidisciplinary care team can be modeled 
as a distributed cognitive system [21].

Extant studies have attempted to examine ICU system 
factors and cognitive load in qualitative and quantita-
tive ways. Several measurements of workload have been 
proposed, including the therapeutic intervention scor-
ing system [22], the NASA Task Load Index (TLX) [23, 
24], and the electronic order volume in electronic medi-
cal records (EMR) [25]. Factors such as the assessment 
of new patients [26–28] and patients’ severity of illness 
[29, 30], and their impact on cognitive burdens and work-
load have been investigated. These studies were based 
on a small sample of patients, which led to a low statisti-
cal power, and the time-dependency property of system 

factors was not considered. Overall, there is a lack of 
understanding regarding the factors associated with the 
cognitive overload.

The overarching goal of our research is to build a model 
to represent the distributed cognitive network behavior 
of an ICU team and to use it to explore the capacity lim-
its of a team of clinicians under a variety of operational 
conditions. In so doing, we sought to highlight system 
vulnerabilities and failure points that might exist in ICUs. 
To achieve this, in this study, we developed a conceptual 
framework, and used data from the Mayo Clinic EMR 
[31] to further investigate the relationship between work-
load factors and the output of decision making described 
in the conceptual framework. The workload factors 
include patient census, rate of admissions, and key 
patient characteristics (unit census, rate of new admis-
sions, patient severity of illness, number of ventilated 
patients, and mortality risk). For the output of the care 
team’s decision making, the number of medication orders 
was chosen based on the experience of a team of clinical 
experts.

Orders are a unit of productivity of the multidiscipli-
nary care team and a surrogate for distributed cognitive 
function [32–35]. The generation of orders in high-acuity 
environments requires demanding cognitive processes, 
and the efforts are typically made within a limited time 
span by the whole team. Absorbing a large amount of 
patient data and information imposes cognitive bur-
dens on the care team. Additionally, interruptions that 
frequently occur in ICU environments while generating 
orders impair working memory [36, 37]. Therefore, mak-
ing large numbers of orders in a unit time implies a high 
cognitive load for the care team.

Among orders, medication orders are typically docu-
mented in the EMR and can be quantified with relatively 
good accuracy [38]. Compared to other types of orders 
(e.g., consultation, physical examination and procedures, 
labs, etc.), first, medication orders are relatively cogni-
tively demanding tasks (beyond a simple button click); 
second, they exhibit a high generation frequency and a 
large volume (in contrast, procedures are ordered far less 
frequently) to ensure the power of statistical analysis. 
Lastly, we limited our focus on medication orders alone 
to minimize the confounding effect of different types of 
orders (e.g., differences in frequency, volume, and cogni-
tive load by order types).

Methods
Setting and electronic environment
A retrospective observational study was conducted using 
EMR data collected from the medical ICU (MICU) at an 
academic medical center, Mayo Clinic in Rochester, MN, 
between January 2016 and April 2018. This study was 
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approved as a minimal risk/exempt study by the Mayo 
Clinic institutional review board (IRB). The data-sharing 
agreement between the University of Florida and Mayo 
Clinic was also approved by the Mayo Clinic IRB.

The MICU under study is a 32-bed medical/respira-
tory intensive care unit which serves a wide variety of 
patient problems, including gastrointestinal bleeding and 
cardiovascular, metabolic, respiratory, renal, and multi-
system failure [39]. We focused primarily on the MICU 
to avoid any confounding effects due to the differences 
in bed capacity, patient mix, and organizational factors 
like staffing models and workflow across units. During 
the study period, the MICU had an average daily admis-
sion rate of 9.0 (SD = 3.4) and a median midnight census 
of 18 (interquartile range (IQR) = 15–20) patients. Two 
ICU teams where each consists of a consultant who leads 
the team, an attending critical care specialist, supervising 
fellows, residents, and nurse practitioners provide care 
with two shifts. Their tasks include physical examination, 
chart review, plan of care discussion, invasive procedure, 
specialty consult, and patient/family communication. 
This staffing model was based on the institutional prac-
tice policy decision and was consistent throughout the 
course of the study period. The multidisciplinary ICU 
rounds typically occur every morning (8–10 am) with fel-
lows, residents, and nurse practitioners, as well as nurses, 
respiratory therapists, a pharmacist, and an attending 
critical care specialist [39], and additionally multidiscipli-
nary ICU rounds occur at 2 pm and 10 pm if needed.

Participants
The participants were patients who had ever stayed in 
the MICU, including those transferred to and from the 
MICU, and those who stayed in the MICU exclusively, 
i.e., no transfer, during the study period. Based on this 
criterion, 6240 MICU admissions were included of which 
4822 were unique patients.

Data collection
EMR data were retrieved from the ICU datamart, 
which is a Microsoft SQL-based database that assem-
bles a near-real-time copy of clinical and administra-
tive data from the Mayo Clinic EMR [31]. Data were 
processed to remove any identifiable information. Spe-
cifically, to reserve the temporal relationship of data 
points, the actual dates were mapped to fake dates and 
the key was retained by the data custodian. The follow-
ing three categories of data were primarily collected 
for this analysis: bed locations, patient outcomes, and 
medication orders. Bed locations consist of detailed bed 
sites during a patient’s hospitalization and their trans-
fers between different units/floors. This information 
was utilized to capture the patient census, which is a 

time dependent variable. In addition to patients’ length 
of stay (LOS) and mortality outcome, we also extracted 
the features associated with the system workload, includ-
ing invasive mechanical ventilation (IMV) usage, admis-
sion date and time, and daily Sequential Organ Failure 
Assessment (SOFA) scores [11, 12, 29, 30]. Medication 
orders were used as a surrogate marker of the output of 
the care team’s decision-making process. The order time 
and medication descriptions for each ICU stay were col-
lected. We created a comprehensive sequential event 
(temporal) dataset, including the events of admission, 
discharge, transfer, and medication orders and their time 
stamps, for individual patients.

Design framework
The conceptual framework of a distributed cognitive 
system in ICUs is illustrated in Fig.  1. To prescribe 
medication orders, a multidisciplinary care team 
makes joint clinical decisions using data and informa-
tion as the input. The patient data and information are 
obtained from bedside observation, EMR documenta-
tion, and communication among team members, as 
well as others. Since our focus was the relationship 
between system workload factors and the production of 
medication orders, we followed the SEIPS framework 
[16], a systems engineering approach to understand-
ing the interactions between humans and the health-
care system. The following four factors were considered 
the system workload factors in this study: patient cen-
sus and census of severely-ill patients, new patients, 
and high mortality risk patients. The patient census is 
a well-documented ICU capacity strain metric [8]. We 
further considered patients who had IMV during their 
stay as severe patients. The data constraints on us did 
not allow us to look at other markers of severity. How-
ever, the use of IMV is typically accurately documented 
in EMR and we also expect that the transitions in 
health states (which need IMV and other invasive inter-
ventions) are the major contributor to workload. Next, 
since the care team spends more time and efforts on 
newly admitted patients [27, 28], we marked patients 
within 3 h post-admission as “new patients.” Most of 
the care activities to admit and start therapeutic man-
agement of a patient require less than 3 h. After these 
activities are completed, patients are regarded as “reg-
ular patients.” Lastly, to measure the mortality risk of 
patients, we used daily SOFA scores, measured from 0 
to 24 based on the degree of dysfunction of six organ 
systems [40]. The daily scores are calculated at admis-
sion and every 24 h by an automated SOFA scoring 
computer program [41]. For tractability, the mortal-
ity risk was treated as a static feature for patient clas-
sification purposes. We identified high mortality risk 
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patients based on the patient’s daily SOFA score(s) with 
the following criteria: an initial SOFA score above 11, 
the highest daily SOFA score above 11, or an average 
of daily SOFA scores above 5, across their entire ICU 
stay. The cutoffs were chosen based on expert opinions 
and the literature [42]. Admittedly, many continuous 
and temporal data were reduced to categorical varia-
bles and some information might be neglected through 
this transition. However, this was necessary to enable a 
first-cut and tractable analysis at the system level. The 
robustness of these operations was examined (see the 
Sensitivity Analysis Section).

We aimed to test the hypothesis that, an ICU opera-
tional condition characterized by a high patient census, 
especially with the presence of large numbers of severe, 
new, and/or high mortality risk patients, will increase 
the risk of cognitive overload among the care team. 
This hypothesis is supported by evidence that decision-
making worsens in strained ICUs [7–12]. Decisions 
like making prescriptions for severe, new, or high mor-
tality risk patients can be more complicated and thus 
time and effort consuming. The increase in interrup-
tions brought by the increase in patient census also dis-
turbs decision making and imposes additional cognitive 
loads. Therefore, we examined a phenomenon that the 
number of medication orders per patient drops signifi-
cantly when the patient census increases in the study 
setting. In other words, there exists a breakpoint where 
the number of medication orders starts to plateau and 
no longer increases at the same rate as the increase in 
patient census. This phenomenon implicitly suggests 
that the care team has reached their capacity cap.

Statistical analysis
To test the hypothesis, univariate piecewise Poisson 
regression models were developed with hourly ICU 
patient censuses as the independent variable and the total 
number of medication orders per hour as the depend-
ent variable. These models were chosen because the out-
come is a discrete variable, i.e., a count. The coefficients 
obtained from each model measure the strength of asso-
ciation in different line segments. Then, these coefficients 
were compared using the generalized F-test. The null 
hypothesis was the coefficients of these line segments 
(representing the rate of medication orders generated per 
unit patient census) are identical. If the null hypothesis is 
rejected, we validate the cutoff as where the rate starts to 
change. Furthermore, we compared the number of medi-
cation orders per patient per hour before and after the 
identified cutoff using the two-sample t-test. Rare occa-
sions (e.g., data of patient census below 10 and over 27; 
see Table  S1 in Additional  file  1) were excluded to gain 
test efficiency. We have conducted a sensitivity analysis 
to ensure that the removal of these points does not affect 
the main observations.

To further characterize the patient census, at the time 
of interest, there could be a high (h) or low (l) presence 
of severe patients, new patients, and high mortality risk 
patients. Figure  2 exhibits the system-level dynamics 
that associate the system workload factors with medica-
tion orders. To simulate the COVID-19 pandemic surge, 
we modeled a scenario where the MICU has a high per-
centage of ventilated patients (i.e., a setting with more 
than 60% of the present patients having ever used IMV 
during their ICU stay). We compared the normal ICU 

Fig. 1  The conceptual framework of distributed cognition in ICUs. Information and data of patients are fed to the care team for clinical decision 
making. The distributed cognitive system includes both the care team and artifacts like technology. The output includes clinical interventions such 
as medication orders. The system workload factors (such as the number of patients and patient characteristics) affect the input (e.g., change in 
quantity) and subsequently affect the decision-making process (e.g., trigger cognitive overload)
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setting with fewer IMV patients and the simulated pan-
demic ICU setting. To examine the effect of time, we cat-
egorized time into three windows, rounding (8:00 am to 
9:59 am), daytime (10:00 am to 9:59 pm), and nighttime 
(10:00 pm to 7:59 am). Then, we developed multiple uni-
variate piecewise Poisson regression models given each 
factor and followed the same test procedure.

Results
Among 4822 patients, 869 patients had been admitted 
to the MICU multiple times, and a total of 6240 MICU 
hospitalizations was identified during this study period. 
We assumed that each hospitalization is independent 
because the patient characteristics in this study were 
time-varying and different, depending on their specific 
hospitalization. As described in Table 1, the median age 
was 64.9 (IQR = 51.8–76.7); male patients accounted 
for more than half of the population; the median LOS 
was 1.5 days (IQR = 0.9–2.7); 584 (9.4%) patients died 
during their stay; 1677 (26.9%) patients had used IMV 

Fig. 2  ICU system dynamics. The first layer describes individual patient stays in ICUs. ICU admission for each patient is represented by one or more 
box(es) depending on locations (bed sites) where they are taken care of. The width of the boxes reflects patients’ LOS and patients within the first 
3 h post-admission are considered as new patients. Their severity of illness evaluated as non-severe (mild) or severe is differentiated by box border 
colors (orange and red, respectively). Also, filled colors indicate the mortality risk of patients: high (yellow) and low (gray). The second layer describes 
the dynamics of system workload factors and the output of medication orders in the MICU. Patients’ medication orders are marked as green stars. 
The system workload factors reflect the care team’s workload and cognitive load at the time point

Table 1  Demographics and hospitalization characteristics 
among 4822 unique MICU hospitalized patients and 6240 MICU 
hospitalizations during the study period

All but sex are summarized based on hospitalizations because they are 
hospitalization-dependent

Demographics Median (IQR) or n (%, N)

Age at admission 64.9 (51.8–76.7)

Male sex 2690 (55.8%, N = 4822)

Hospitalization characteristics

LOS 1.5 (0.9–2.7)

Mortality 584 (9.4%, N = 6240)

IMV usage 1677 (26.9%, N = 6240)

Days on IMV 1.1 (0.4–3.0)

Initial SOFA scores 4 (2–7)

Highest SOFA scores 5 (3–7)

Average SOFA scores 3.7 (2–5.3)
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during their stay and the median days on IMV were 1.1 
(IQR = 0.4–3.0) among all patients.

System workload factors
The hourly patient census had a median of 18, with an 
IQR of 16–21. The average bed utilization was 56.3%, 
calculated by the median of daily patients over the bed 
capacity [43]. For severity of illness, the percentage of 
patients who had ever had IMV usage was measured 
on an hourly basis. The median was 45% (IQR = 36.8–
54.2%). In terms of new admissions, the overall hourly 
admission rate is 0.37 (SD = 0.65), 0.42 (SD = 0.68) for 
rounding and daytime, and 0.31 (SD = 0.60) for night-
time, respectively. The census of new patients differed 
by the overall patient census. The censuses were higher, 
ranging from a total of 13.5–20 new patients per round-
ing and daytime, under a moderate bed occupancy (13–
20 patients), and ranging from 7 to 11.5, under a high 
bed occupancy (21–26 patients). This is also true for the 
nighttime period. The censuses of new patients ranged 
from 11 to 16.3 per nighttime with a moderate bed occu-
pancy (12–21 patients), and ranged from 5 to 9 with 
a high bed occupancy (22–27 patients), see Table  S2 in 
Additional file 1.

For the mortality risk, the medians of the initial, high-
est, and the average daily SOFA scores were 5 (median, 
IQR = 3–8), 5 (median, IQR = 3–8), and 3.7 (median, 
IQR = 2–5.2), respectively. High mortality risk patients 

accounted for a median of 33% (IQR = 26.3–41.7%) for 
every hour.

Medication orders
A total of 235,200 medication orders were recorded for 
these 4822 patients during their hospitalization. In the 
MICU, an average of 12.6 medication orders per hour 
was generated with a standard deviation (SD) of 9.6. The 
percentage of patients who had generated medication 
orders, and the per patient medication orders during 
each hour of the first 48 h are shown in Fig. 3(a) and (b), 
separated by IMV usage vs. no usage. Patients with IMV 
usage were more likely to generate medication orders 
compared to the contrast no IMV usage group, by 63% 
more on average. Compared to those with no IMV usage 
(hourly average = 0.7; SD = 1.8), the care team ordered 
more medications for patients with IMV usage (hourly 
average = 1.1; SD = 2.8) during the first 48 h of their 
admission (p < 0.001). For the comparison regarding new 
and regular patients, the per patient medication orders 
during the first 3 h were larger (hourly average = 2.1; 
SD = 3.5), as opposed to those of the following (hourly 
average = 0.7, SD = 1.6; p  < 0.001). Those for the high 
and low mortality risk patients during the first 48 h were 
1.1 (hourly average; SD = 2.5) and 0.8 (hourly average; 
SD = 1.8), p < 0.001. We only showed the statistics of the 
first 48 h, since the median patient LOS was 1.46 days 
(IQR = 0.84–2.72 d), i.e., the majority of patients were 

Fig. 3  The number of medication orders generated during each hour of the first 48 h since ICU admission by IMV usage (orange for patients who 
had ever used IMV during their stay vs. blue for those who had not): a the percentage of patients who had generated medication orders, and b the 
hourly average of per patient medication orders for each elapsed hour
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discharged after 48 h. The comparisons were summarized 
in Table 2. Overall, the number of medication orders per 
hour was dependent on IMV usage, new admission, and 
high mortality risk.

Association analysis
The statistical test results of the univariate piecewise 
Poisson regression were provided in Table  S3 in Addi-
tional file 1. The relationship between patient census and 
the total number of medication orders (hourly) is illus-
trated in Fig. 4(a). Compared to a steep increase in orders 
when the census was below 18, the rate reduced between 
the range of 19–25, and then the rate was slightly recov-
ered. The regression results validated that the two slopes 
before and after the breakpoint 18 were significantly dif-
ferent (p < 0.001). This suggests a reduction in medication 
orders per patient per hour when the patient census was 
above 18 patients, i.e., average = 0.74; SD = 0.56 vs. aver-
age = 0.65; SD = 0.48; p < 0.001, see Table 3. In short, the 
care team’s cognition function was impacted when the 
ICU capacity reached the 56% (18 out of 32) occupancy, 
and this phenomenon continued to around 80% (26 out 
of 32) of the ICU capacity. The curve rebounded when 
the census was high, possibly due to purposely restrain-
ing new admissions when the bed occupancy is high (see 
Table S1 in Additional file 1).

The same was true when controlling for time, as exhib-
ited in Fig.  4(b). The statistical tests confirmed that the 
two pairs of slopes, measured with a census below 19 or 
above 18, were significantly different (p  < 0.001 for the 
daytime and nighttime; and p = 0.032 for the rounding 
time as displayed in Table S3 in Additional file 1). Also, 
the number of medication orders per patient per hour 
significantly dropped (0.79 vs. 0.67, p < 0.001 for the day-
time; 0.61 vs. 0.50, p < 0.001 for the nighttime; and 1.31 
vs. 1.15, p  < 0.001 for the rounding time, see Table  3). 

Thus, we concluded that time of the day affects the rela-
tionship between patient census and medication orders, 
but the same breakpoint exists regardless of time.

Next, the comparison between the normal ICU setting 
with fewer IMV patients, and the simulated pandemic 
ICU setting is exhibited in Fig.  4(c). It can be seen that 
the curve changes considerably when the ICU contained 
severely-ill, ventilated patients (indicated by IMV usage 
to match the feature of COVID patients). In the simulated 
ICU coping with patients with features resembling that of 
COVID patients, the rate of new medication orders fell 
significantly (p = 0.032, see Table S3 in Additional file 1), 
when the census went about 16 patients, and did not 
recover until the unit census stabilized above 26 patients. 
The number of medication orders per patient per hour 
was reduced from an average of 0.81 (SD = 0.59), to an 
average of 0.63 (SD = 0.47), p < 0.001, see Table 3. This is 
different from the regular scenario where the breakpoint 
was 18. In addition, a recovery was not witnessed, indi-
cating that in circumstances where the presence of severe 
patients is high, the change occurred at a lower census 
and persisted.

An increased presence of high mortality risk patients 
(e.g., Do Not Resuscitate patients) alone is not likely a 
major cause of overloading the care team, as depicted 
in Fig.  4(d) The curve of the high presence setting, i.e., 
above median (33%) present patients were at high mor-
tality risk, was close to that of a low presence setting, and 
their breakpoints were identical (p  < 0.001 for the low 
census and p = 0.010 for the high census, see Table  S3 
in Additional  file  1). Similarly, an increased presence of 
newly admitted patients was not identified as a signifi-
cant risk factor for reduction in medication orders, i.e., 
affecting the location of the breakpoint, although it led 
to more medication orders as depicted in Fig.  4(d). To 
support this, we examined the location of the breakpoint 
regarding the number of new patients admitted hourly, 
considering more than one new admission (median) in an 
hour as a high number of new patients. The breakpoints 
were identical regardless of the census of new patients 
(p = 0.023 for the low census and p = 0.001 for the high 
census, see Table S3 in Additional file 1).

Sensitivity analysis
We adjusted the definition of high mortality risk patients 
with different criteria to show the definition does not 
affect the results. For instance, we tested the model with 
patients having an initial SOFA score above 11 being 
defined as high mortality risk patients. Correspond-
ingly, fewer patients in the ICU were considered as of 
high mortality risk. Using the median presence (8.3%; 
IQR = 4.5–14.3%) to dichotomize the ICU operational 
condition into a low or high presence of high mortality 

Table 2  Comparisons of the number of hourly medication 
orders by patient characteristics

P-values were calculated using the two-sample t-test. If a p-value is less than 
0.05, the two quantities are considered significantly different

Characteristics Average (SD) P

IMV usage < 0.001

Usage 1.1 (2.8)

Non-usage 0.7 (1.8)

New patients < 0.001

New 2.1 (3.5)

Regular 0.7 (1.6)

High mortality risk patients < 0.001

High 1.1 (2.5)

Low 0.8 (1.8)
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risk patients, we had the observation similar to the main 
analysis: the presence of high mortality risk patients still 
was not a remarkable factor of medication order reduc-
tion. The breakpoint was not changed when there was a 
high presence of high mortality patients, see Table S4 in 

Additional  file  1. Another sensitivity analysis including 
rare patient census occasions (e.g., patient census ranging 
from 4 to 9 and 28–29, see Table S1 in Additional file 1) 
was performed and the same breakpoints were identified 
as summarized in Table S5 in Additional file 1.

Fig. 4  Medication orders per hour against patient census: a overall; b when controlling for the time periods (for the rounding period, samples with 
low and high census were excluded due to low sample size); c when controlling for the presence of severe patients (high vs. low); and d when 
controlling for the presence of new patients and high mortality risk patients, respectively. The high presence of severe patients was defined as an 
ICU operational condition with more than 60% of the present patients having ever used IMV at the moment. The high presence of new patients 
was defined as an ICU operational condition with more than one new patient at the moment. The high presence of high mortality risk patients 
was defined as an ICU operational condition with more than 33% of the present patients having higher SOFA scores than the chosen criteria at the 
moment. An error bar indicates a 95% confidence interval for the average of medication orders given a certain patient census
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Discussion
Methods
A comprehensive understanding of the system workload 
factors and their contribution to cognitive overload is 
essential to ensuring quality and timely critical care deliv-
ery, as well as improving patient outcomes. Our distrib-
uted cognition framework guided by systems approaches 
can help bridge this knowledge gap. Specifically, our pro-
posed framework serves as a supplement to the existing 
human-subject research approaches (e.g., NASA-TLX 
[13, 14], Electroencephalography (EEG), Heart Rate Vari-
ability, Functional Near-Infrared Spectroscopy (fNIRS) 
[44]). There are several limitations to these approaches. 
For instance, for NASA-TLX, there may be biases from 
respondents [45]; EEG and fNIRS can accurately measure 
cognitive load, but usually in a laboratory environment. 
Although fiberless, wearable fNIRS has been developed 
to enable the experiment in the real world [46], it is 
unlikely to be testable in high-acuity ICU environments 
due to patient safety concerns. In contrast, our frame-
work is entirely based on observational data collected 
from real-world ICUs, which makes a large-scale study 
feasible, less costly and time-consuming. In addition, 
our framework focuses on the distributed cognitive load, 
while the others are designed for measuring individual 
cognitive load and may require additional procedures to 
calculate the distributed cognitive load. Thus, although 
subject to several limitations to be elaborated in the Lim-
itations section, this framework enables us to achieve an 
investigation of the distributed cognitive function using 
a large amount of real-world data. Following the frame-
work, we identified surrogate markers in EMR with sat-
isfactory data quality and quantity, and used them to 

identify important cutoffs to show when cognitive bur-
den may potentially impact the team’s function.

Results and system interventions
Our model suggests a relationship between operational 
conditions, patient factors, and team cognitive perfor-
mance that warrants further study. The care team is likely 
to suffer a long-lasting cognitive overload with a high 
presence of severely-ill patients, represented by a signifi-
cant reduction in their ability to make medication orders 
and no recovery of their cognitive capacity. According to 
the situational awareness theory [47, 48], the care team 
is less likely to retain high comprehension when suffer-
ing cognitive overload. Raising the awareness of the care 
team about the potential burnout and breakdown will 
enable them to perceive their situation and become more 
agile to reach the stage of projection, i.e., taking timely 
actions to avoid cognitive overload. The insights obtained 
from this study serve as a valuable guideline to mitigate 
the risk of cognitive overload.

One guideline is to strategically allocate additional 
clinical resources to mitigate the impact of workload on 
cognitive function. As the presence of large numbers of 
severe patients constrained the care team’s ability to pro-
vide clinical interventions, if such a work environment 
is long-lasting (e.g., the pandemic setting), the staffing 
model that works in the normal ICU environment might 
not be sufficient and a new staffing model (e.g., hav-
ing an additional care team) might be required. In con-
trast, if the workload surge is temporary, for instance, a 
large number of patients were admitted or planned to be 
admitted during a six-hour shift, then, a teleICU consult-
ant can be introduced as a backup consultant of the care 

Table 3  Comparisons of medication orders per patient per hour before and after the cutoff

The cutoff is the patient census where the rate of medication orders generated per patient started to change. The difference was tested by the two-sample t-test and 
the p-values are shown, for the overall (ungrouped) data, and subgroups, stratified by time and system workload factors, respectively. For workload factors, being 
“Low” indicates a low presence of the featured patients in the entire census. If a p-value is less than 0.05, the two quantities are considered significantly different

Characteristic Sample size Cutoff No. of medication orders per patient per 
hour (average; SD)

P

Patient 
census≤Cutoff

Patient 
census>Cutoff

Overall 18,630 18 0.74(0.56) 0.65(0.48) < 0.001

Time periods Daytime 9294 18 0.79(0.53) 0.67(0.41) < 0.001

Nighttime 7784 18 0.61(0.47) 0.50(0.36) < 0.001

Rounding 1552 18 1.31(0.84) 1.15(0.71) < 0.001

Severe patients Low 16,252 18 0.74(0.56) 0.66(0.48) < 0.001

High 2378 16 0.81(0.59) 0.63(0.47) < 0.001

New patients Low 10,170 18 0.63(0.52) 0.59(0.47) < 0.001

High 8460 18 0.85(0.58) 0.74(0.48) < 0.001

High mortality risk patients Low 9623 18 0.72(0.56) 0.63(0.48) < 0.001

High 9007 18 0.77(0.56) 0.67(0.48) < 0.001
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team [49]. Consequently, the breakpoint might vanish or 
shift to a higher patient census. Overall, the appropriate 
multidisciplinary composition of teams needed in acute 
and strained surge environments should be carefully 
determined. For instance, there might be a difference 
between house staff and advanced practice provider staff-
ing models (particularly in the setting of increasing pro-
tocolized care) [50, 51].

Another remedy is to streamline the admission process 
to avoid an increased number of new patients in par-
ticular time periods so the workload can be evenly dis-
tributed across the day. This can potentially be achieved 
by reengineering the discharge process so that a bet-
ter patient room turn around can be achieved [52]. For 
instance, if the discharge order can be placed in the early 
morning, more patients can be admitted earlier in the day 
rather than being pushed to the late afternoon. Addition-
ally, geographic cohorting of similar patients, particularly 
ICU patients, has been demonstrated to be associated 
with reduced interruptions and improved coordination 
of care [53].

Our study also promotes the potential benefit of health-
care information technology. A clinical decision support 
system (CDSS) can support quick decisions with less 
effort to achieve workload reduction [54]. We observed 
that a high mortality risk was not influential with respect 
to burdening the care team. It might be attributed to the 
wide adoption of the computerized physician order entry 
(CPOE) system, which provides an order set that covers a 
variety of common clinical tasks. The use of it effectively 
reduces cognitive workload and minimizes the time-con-
suming procedures (e.g., adjusting doses of long-standing 
medication orders) [5, 6]. Another example is discharge 
planning using data-driven risk prediction models. Arti-
ficial intelligence based CDSSs to predict a target event 
(e.g., readmission [55, 56], disease diagnosis [57–59]) 
have attracted growing attention. Customizable CDSSs to 
project the expected workload of the care team and allo-
cate the resources properly to avoid potential burnout are 
urgently desired.

Limitations
There are several limitations of this study. Although the 
average LOS of the study participants and the sever-
ity level were similar to the nationwide data [60], the 
patient cohort was mainly from ICUs in a single center 
(Mayo Clinic, Rochester MN). The findings might be 
affected by the organizational factors such as hospital- 
and unit-specific protocols (staffing model, seasonal 
variation), workflows (e.g., nighttime or weekend admis-
sion), and patient mix (characterized by demographic 
and socioeconomic features such as race, ethnicity, and 

insurance status). Therefore, a multi-center study with 
diverse populations is a useful and important future 
direction.

Using medication orders as a surrogate of productiv-
ity allowed us to develop the model because complete 
medication orders can be accessed from EMR and quan-
tified with relatively good accuracy. We acknowledge that 
the number of medication orders does not necessarily 
equate with cognitive load, and future work is warranted 
to understand mechanistically if this reduction in medi-
cation orders is primarily due to cognitive overload or 
other reasons such as changes in prescribing efficiency. 
A future study that employs validated methods (e.g., 
collecting physiological signals) to measure the cogni-
tive load needs to be conducted to rule out other possi-
bilities. In addition, a drill down into the specific orders 
may be instructive. For instance, when a patient is put on 
a ventilator, the ventilator bundle order set can be used 
to deliver several orders with one click, and the effort 
involved in making orders varies based on the order type 
(e.g., a new order or a modification of an established 
order). However, this detailed information is currently 
not available to the research team, and as an explora-
tory effort, the use of quantities of medication orders 
has provided us new findings and motivated us to fur-
ther explore this phenomenon. Potential considerations 
for future work include a full characterization of detailed 
medication order types, and the collective use of other 
interventions such as lab orders and procedures. Our 
study can benefit from this extension upon obtaining the 
relevant data.

To evaluate the severity of illness of patients and to 
simulate the pandemic operation conditions, we primar-
ily considered the IMV usage. This was built on the fact 
that ventilated patients in general require a higher level of 
care by the care team. We did not assess additional organ 
support such as dialysis due to data limitation. Ideally, 
capturing the physiologic transition states of patients like 
from being unstable to stable (and back to unstable) will 
allow us to better capture the change in the team’s cogni-
tive load and performance. An effort to highlight activi-
ties associated with a high cognitive load (e.g., intubation, 
resuscitation, additional organ support, etc.) should be 
pursued.

The regression models generally assumed that other 
factors between the independent and dependent vari-
ables had been sufficiently accounted for. However, this is 
typically difficult to be validated. For instance, the simu-
lated COVID-19 operation condition is likely a best-case 
scenario, as we mainly considered the patient features 
like prolonged LOS and IMV usage. We did not factor 
other stressors a novel disease can place on the cogni-
tive function of the team, such as unknown pathology 
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and unfamiliar mental models of the disease, the training 
and learning needed for personal protection equipment 
use, the use of new drugs. The genuine team cognitive 
capacity is therefore likely to be much less than what we 
captured in the current model. In addition, the drop in 
medication orders could also be attributed to decision 
fatigue in addition to cognitive overload and warrants 
further investigation [61–64].

Another limitation of the study is the lack of data 
regarding the individual activities and tasks of multidis-
ciplinary care team members. The impact of team com-
position on the cognitive function could not be analyzed 
but may also play an influential role. In the next steps, we 
seek for a better understanding of the circumstances in 
which team cognitive function begins to break down in 
the ICU.

Lastly, we would like to note that our main takea-
way is the variations in medication order generation 
based on the system workload and no direct inferences 
can be made about the association of cognitive capac-
ity with clinical outcomes such as mortality, ICU/hos-
pital LOS, and discharge destination. There have been 
studies and evidence demonstrating an association 
between increased medication errors and increased cli-
nician workload [7–12]. The increase in workload can 
potentially increase interruptions in tasks and result in 
failures to progress to the completion of the task and 
errors during the completion of the task [36, 37, 65]. 
Therefore, our future work aims to test the robust-
ness of the relationship between orders and cognitive 
overload, the operational contributors to cognitive 
overload, and the significance of cognitive overload on 
important patient-centered outcomes such as LOS, dis-
charge disposition, and the cost of care.

Conclusions
In this study, we showed that the care team’s capacity to 
prescribe medication orders became constrained when 
the ICU was more than 50% occupied, and the level of 
impact was elevated when there was an increased pres-
ence of severe patients and/or newly admitted patients 
who demanded intense clinical interventions. The model 
implies that in a pandemic setting, the ICU care team 
is even vulnerable and at frequent risk for a cognitive 
breakdown due to both surging demands and the com-
plex nature of COVID illness. This work also emphasizes 
the importance of increasing situational awareness of the 
ICU care team to detect and react when the cognitive 
function becomes vulnerable. System interventions (e.g., 
supplementary teleICU consultants, reengineered admis-
sion and discharge processes, and geographic cohorting) 
and CDSSs can potentially mitigate the risk of cognitive 
overload.
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