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cerebral ischemia/reperfusion injury via the
microRNA-214/ROCK1/NF-κB axis
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Abstract

Background: Cerebral ischemia/reperfusion injury (CIRI) is a complication of surgical procedure associated with
high mortality. The protective effect of dexmedetomidine (DEX) on CIRI has been explored in previous works, yet
the underlying molecular mechanism remains unclear. Our study explored the protective effect of DEX and its
regulatory mechanism on CIRI.

Methods: A CIRI rat model was established using middle cerebral artery occlusion (MCAO). Neurological deficit
scores for rats received MCAO modeling or DEX treatment were measured. Cerebral infarction area of rats was
detected by TTC staining, while damage of neurons in hippocampal regions of rats was determined by
hematoxylin-eosin (HE) staining. Apoptosis rate of neurons in hippocampal regions was examined by TUNEL
staining. The dual-luciferase assay was performed to detect the binding of microRNA-214 (miR-214) to Rho-
associated kinase 1 (ROCK1).

Results: DEX treatment significantly reduced infarction area of MCAO rats and elevated miR-214 expression.
Injection of miR-214 inhibitor attenuated the effect of DEX in MCAO rats by increasing the area of cerebral
infarction in rats and apoptosis rate of hippocampal neurons. ROCK1 was targeted and negatively regulated by
miR-214. The overexpression of ROCK1 led to activation of NF-κB to aggravate CIRI.

Conclusion: Therapeutic effects of DEX on CIRI was elicited by overexpressing miR-214 and impairing ROCK1
expression and NF-κB activation. Our finding might provide novel insights into the molecular mechanism of DEX in
rats with CIRI.
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Background
Cerebral ischemia/reperfusion injury (CIRI) is often in-
duced by ischemic stroke which is caused by arterial oc-
clusion, leading to long-term disability and even death
[1]. CIRI is also a devastating complication of neuro-
logical and cardiovascular surgeries [2]. Moreover, the
neurodegenerative disorders caused by CIRI significantly

impair the memory and learning ability, limb use and
other neurological performances [3]. Although the mor-
tality caused by CIRI is largely reduced, the incidence of
accompanied ischemic stroke remains high [4]. There-
fore, more potential therapeutic options for CIRI need
to be studied.
Previous clinical evidence has proposed that dexmede-

tomidine (DEX) could enhance the cardiac and neuro-
logical surgeries outcomes and relieve the pain of
sufferers [5]. DEX is a kind of α2-adrenergicreceptor
agonist that possesses analgesic and sedative properties
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[6]. Moreover, DEX has already been reported to exert
protective effects against IRI of various organs, including
the heart and the kidney and to be neuroprotective
against CIRI in rats, yet the underlying mechanism re-
mains to be elucidated [7]. In recent works, microRNAs
(miRNAs) have been indicated to be involved in the neu-
roprotective effects of DEX. For instance, miR-340 could
enhance the therapeutic impacts of DEX on neuroin-
flammation [8]. Similarly, miR-128 strengthens neuro-
protective effects of DEX on neonatal mice with CIRI
[9]. Interestingly, miR-214 participates in the regulation
of CIRI in rats with unspecified molecular mechanism
[10]. However, limited studies investigated the involve-
ment of miR-214 in DEX treatment. Rho-associated kin-
ase 1 (ROCK1) has been identified as a target gene of
miR-214 in osteosarcoma cells [11]. Nevertheless, the re-
lation between miR-214 and ROCK1 has rarely been re-
ported in CIRI. ROCK1, a member of the AGC kinases
family and a significant mediator of mammalian cell mo-
tility via the regulation of cytoskeleton [12] has also been
reported to regulate the neuronal apoptosis induced by
CIRI [13]. Furthermore, ROCK1 could promote the
phosphorylation of nuclear factor kappa-light-chain-en-
hancer of activated B cell (NF-κB) by activating TLR4,
thereby promoting the development of inflammation in
cornea cells [14]. NF-κB is extensively investigated in
CIRI, and impairment of the NF-κB pathway may pro-
vide a therapeutic strategy for CIRI [15, 16]. In the
present study, we postulated that miR-214, ROCK1, and
NF-κB may be involved in DEX-mediated protective ef-
fects against CIRI in rats. Therefore, this study was con-
ducted to validate our assumption and to investigate the
impacts of DEX-regulated miR-214 as well as the rele-
vant regulatory mechanism on CIRI using Sprague Daw-
ley (SD) rats with middle cerebral artery occlusion
(MCAO).

Methods
Animal experiments
A total of 100 healthy specific-pathogen-free SD adult
male rats (aged 8–10 weeks; weight 200–250 g) were
purchased from Beijing Vital River Laboratory Animal
Technology Co., Ltd. (Beijing, China) (97 rats were actu-
ally used and the remaining three were used for other
studies). Rats were acclimatized to the laboratory for 1
week before experiments, during which they had a free
access to feed and water. Room temperature was set at
22 ± 2 °C with a relative humidity at 50–60% and 12:12 h
light-dark cycle. Ventilation was performed regularly.
Mats were replaced to keep rats healthy. The sample size
of the animals and the flow chart of the study are shown
in Supplementary Material. The animals were divided
into 8 groups. Establishment of the model was repeated
as necessary to ensure that each group had the required

number of animals (n = 10) (Table 1). The mortality
rates of rats for each MCAO-based experiments are ex-
hibited in Table 2.

MCAO modeling and neurological function evaluation
The rats were fasted for 12 h before surgery, yet having a
free access to water. The MCAO model was established
referring to Zea-Longa method, followed by the neuro-
logical function evaluation after 24 h [17]. The rats were
anesthetized by an intraperitoneal injection of 10%
chloral hydrate solution (300 mg/kg) and fixed in a su-
pine position. The internal and external carotid arteries
of the common carotid were carefully separated, whilst
proximal common end of the common carotid artery
and the distal end of the external carotid artery were li-
gated. A nylon threaded bolt was slowly inserted into
the internal carotid artery and secured with a retaining
wire. After occlusion of blood flow for 2 h, the bolt was
pulled out, followed by a 24-h reperfusion. Eventually,
the wound was sutured layer by layer, during which the
ambient temperature was maintained at 37 ± 0.5 °C with
rectal temperature, respiratory rate and heart rate of rats
monitored. The awakened rats were put back to the
room for further observation.
Twenty-four h after operation, the neurological func-

tion of each rat was evaluated by scoring: 0 point for rats
without neurological symptoms; 1 point for rats that
could not fully extend the contralateral forepaw when
tails were raised (indicating a mild neurological deficit);
2 points for rats turned to the other side of the oper-
ation while walking (indicating a moderate neurological
deficit); 3 points for rats fell to the left (indicating a se-
vere focal deficit); 4 points for rats that could not walk
on their own or lose consciousness. Rats with neuro-
logical deficit scores ranging from 2 to 3 were taken as
successful modeled MCAO rats. Rats not conforming to
the criteria and those experienced subarachnoid
hemorrhage or died within 24 h were excluded. Other
rats were randomly selected and received experimental
procedures. A total of 17 MCAO modeled rats did not
meet the requirements. At the end of the experiment, all
alive rats were euthanized by intraperitoneal injection of
sodium pentobarbital at 200 mg/kg.

2, 3, 5-Triphenyltetrazolium chloride (TTC) staining
Five rats from each group were euthanized by an intra-
peritoneal injection of sodium pentobarbital (200 mg/
kg). The brain tissues were harvested, paraffin-
embedded, and cut into 2-mm thick coronal sections.
The sections were dewaxed by xylene, dehydrated by
gradient ethanol, stained with 10 g/L TTC solution
(Solarbio, Beijing, China) for 15 min, and fixed with 4%
paraformaldehyde. Normal brain tissues were stained in
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red, whereas infarcted tissues in white. The infarction
area was calculated by ImageJ.

Hematoxylin-eosin (HE) staining
The remaining five rats in each group were euthanized
by an intraperitoneal injection of 200 mg/kg sodium
pentobarbital. The isolated hippocampal tissues were
fixed in 4% paraformaldehyde solution, paraffin-
embedded, and sectioned (thickness of 5 μm) with a par-
affin slicer (Leica, Wetzlar, Germany). After being
dewaxed by xylene and dehydrated by gradient ethanol,
hippocampal tissue sections were stained with
hematoxylin (Sigma-Aldrich, St. Louis, MO, USA) for 5
min and differentiated with ethanol hydrochloride for
30 s. A 2-min eosin staining (Sigma-Aldrich) was then
performed. After routine dehydration, clearing, and
mounting, hippocampal neurons were observed under a
400-fold optical microscope (Olympus BX51, Olympus,
Tokyo, Japan).

Terminal deoxynucleotidyl transferase-mediated dUTP-
biotin nick end labeling (TUNEL)
Paraffin-embedded rat hippocampal tissues were sec-
tioned (thickness of 5 μm), dewaxed and dehydrated.
Apoptotic neuronal cells were quantified by a TUNEL
apoptosis detection kit (ZSJQ Biotechnology, Beijing,
China) and observed under the light microscopy (BX50;

Olympus) in five randomly selected fields. Normal nuclei
were stained in blue, while positive apoptotic cells in
brown-yellow. TUNEL-positive cells were measured by
ImageJ.

Microarray analyses
Variation of miRNAs in paraffin-embedded brain tissues
of rats in the MCAO group and the MCAO + DEX
group (n = 3) was analyzed by SurePrint Rat miRNA Mi-
croarrays (Agilent, Santa Clara, CA, USA). Data were re-
trieved and analyzed by Agilent feature extraction
software, and raw data were normalized using quantile
normalization. Other analyses were conducted through
GeneSpring GX software (Agilent).

Reverse transcription quantitative polymerase chain
reaction (RT-qPCR)
Total RNA was extracted by RNAiso Plus (TaKaRa,
Tokyo, Japan). Reverse transcription was conducted by
reverse transcription reagents (TaKaRa), and amplifica-
tion by SYBR Green Master Mix (TaKaRa) in Light Cy-
cler 480II (Roche Diagnostics, Co., Ltd., Rotkreuz,
Switzerland). U6 or glyceraldehyde-3-phosphate de-
hydrogenase (GAPDH) served as loading controls.
Primers used in this experiment are shown in Table 3.

Dual-luciferase reporter assay
The putative binding sequence of miR-214 in ROCK1
3′-untranslated region (UTR) was obtained through
Starbase (http://starbase.sysu.edu.cn/), based on which
mutation of the binding site was designed. The sequence
was cloned to the downstream of luciferase gene in the
pmirGLO luciferase vector (Promega, Madison, WI,
USA) to generate the luciferase reporter plasmids
ROCK1-wild type (WT)/ROCK1-mutant type (MT),
which were co-transfected with miR-214 mimic or nega-
tive control (NC). Relative luciferase activity was mea-
sured with a dual-luciferase reporter assay system
(Promega).

Table 1 Grouping for experimental animals

Group (n = 10) Surgerical procedures

sham Procedures for anesthesia were the same as that for the MCAO group, except for the occlusion of middle cerebral artery

DEX Based on the sham group, DEX was intravenously administered at a loading dose of 1 μg/kg at the very beginning of the
surgery, and was then administered at 0.05 μg/kg/min for the next two hours

MCAO MCAO modeling

MCAO + DEX Simultaneous treatment of MCAO modeling and DEX

NC inhibitor/miR-214
inhibitor

Based on the operation of MCAO + DEX, NC inhibitor/miR-214 inhibitor (80 nM) with invivofectamine was administered
via intracerebroventricular infusion half an hour before surgery

oe-NC/oe-ROCK1 Based on the operation of MCAO + DEX, oe-NC/oe-ROCK1 (100 nM) with invivofectamine was administered via intra-
cerebroventricular infusion half an hour before surgery

Plasmids of miR-214 inhibitor, oe-ROCK1 and the matched NC were purchased from GenePharma (Shanghai, China)
Notes: DEX Dexmedetomidine, MCAO Middle cerebral artery occlusion, ROCK1 Rho-associated kinase 1, miR-214 MicroRNA-214, NC Negative control

Table 2 Animal mortality rates for each MCAO-based
experiments

Group Mortality rates (based on 10 rat/per group)

MCAO 1/10 (10%)

MCAO + DEX 2/10 (20%)

NC inhibitor 3/10 (30%)

miR-214 inhibitor 2/10 (20%)

oe-NC 1/10 (10%)

oe-ROCK1 3/10 (30%)

Note: MCAO Middle cerebral artery occlusion, DEX Dexmedetomidine, miR-214
MicroRNA-214, NC Negative control, oe Overexpression
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Immunohistochemistry
Briefly, paraffin-embedded rat hippocampal tissue sections
(thickness of 5 μm) were deparaffined, hydrated, and
treated with 3% H2O2 for 10min to block endogenous
peroxidase activity. Non-specific binding was offset by 5%
bovine serum albumin (BSA). Next, the sections were in-
cubated with primary antibodies to ROCK1 (1:100,
ab134181, Abcam, Cambridge, UK) or phosphorylated
NF-κB p65 (phospho-S529) (1:100, ab97726, Abcam) for
2 h at room temperature, and with secondary goat anti-
rabbit IgG H&L (horseradish peroxide, 1:2000, ab205718,
Abcam) for 30min, followed by another a 30-min incuba-
tion with streptavidin-horseradish peroxidase complex.
The sections were then stained by diaminobenzidine,
counterstained with hematoxylin, fixed, and observed
under a microscope with 4 visual fields randomly selected.
The positive rate was measured by ImageJ.

In situ hybridization (ISH)
Paraffin-embedded rat hippocampal tissue sections (5 μm)
were heated in a 60 °C oven for 2 h, dewaxed, and hydrated.
The sections were treated with Proteinase K working solu-
tion at 37 °C for 5min. The sections were incubated with
primary antibody to NeuN (1:100, ab177487, Abcam) for 2
h at room temperature and then incubated with goat anti-
rabbit secondary antibody to IgG H&L (Alexa Fluor® 488, 1:
200, ab150077, Abcam) for 30min at room temperature. A
specific RNA hybridization probe for Cy5-labeled miR-214
(Abologist, Shanghai, China) was subsequently added for a
1-h incubation at 55 °C, followed by a 3-h hybridization at
37 °C. The nuclei were stained and sealed using 4′,6-

Diamidino-2-Phenylindole staining and sealing agent (Cell
Signaling Technologies, Beverly, MA, USA). Finally, the ex-
pression of miR-214 (red) in neuronal regions of rat hippo-
campal tissues (NeuN labeled, green) was observed under a
fluorescence microscopy (Olympus), and ImageJ was used
for quantitative analysis.

Statistics
All quantitative data conform to normal distribution
were exhibited as mean ± standard deviation. Three in-
dependent experiments were carried out. Statistical ana-
lysis was performed using SPSS 22.0 software (SPSS, Inc.
Armonk, NY, USA). Data between two groups were
compared using unpaired t test, data among multiple
groups using two-way or one-way analysis of variance
(ANOVA) with Tukey’s post-hoc test. p < 0.05 represents
statistically significant.

Results
DEX ameliorates CIRI in MCAO rats
To explore the therapeutic effects of DEX on rats with
CIRI, we scored the neurological function of rats at 24 h
post-MCAO (Fig. 1A). There was no significant change of
the neurological deficit score between the DEX group and
the sham group, suggesting that treatment of DEX alone
did not affect neurotoxicity in rats. However, neurological
deficit scores for rats in the MCAO and the MCAO +
DEX groups were higher than those in the sham group,
yet the MCAO + DEX group showed reduced neuro-
logical deficit scores relative to the MCAO group.
Next, TTC staining was performed on coronal sections

of rats, which showed that the area of cerebral infarction
increased in rats with CIRI, and DEX partially reduced
infarction area (Fig. 1B). Subsequently, the neurological
damage in the hippocampal tissues was detected (Fig.
1C, D). HE staining revealed that neurons in the hippo-
campal CA1 region of rats in the sham and the DEX
groups were regularly aligned, which exhibited intact
cellular structure with round, large, and clearly visible
nuclei. In contrast, MCAO rats showed obvious neur-
onal damage with irregularly shaped cells, concentrated
cytoplasm and nuclei, and impaired hippocampal struc-
ture. The neuronal damage of the MCAO + DEX group
was ameliorated versus the MCAO group.

DEX induces miR-214 expression in rats with CIRI
To understand the mechanism of DEX affecting CIRI,
microarray analysis of brain tissues in the MCAO rats
with or without DEX treatment was conducted to screen
out differentially expressed miRNAs induced by DEX
treatment. The top ten differentially expressed miRNAs
are shown in Fig. 2A. Among them, miR-214 showed
the most remarkable difference after DEX treatment in
brain tissues of MCAO rats. The effect of DEX on miR-

Table 3 Primer sequences for RT-qPCR

Targets Sequences (5′-3′)

miR-214 F: AGAGTTGTCATGTGTCT

R: GAACATGTCTGCGTATCTC

ROCK1 F: CACGCCTAACTGACAAGCACCA

R: CAGGTCAACATCTAGCATGGAAC

SOX4 F: GATCTCCAAGCGGCTAGGCAAA

R: GATCTCCAAGCGGCTAGGCAAA

SEMA4C F: GGAGTATGACTGCTATTCCGAGC

R: ACACCAACCGAGCCTTCAGGAA

PPTC7 F: GCGGTTAGTGAAAGAAGGACGC

R: TTCTGTCCAGCACCACGATGCA

U6 F: CTCGCTTCGGCAGCACAT

R: TTTGCGTGTCATCCTTGCG

GAPDH F: CATCACTGCCACCCAGAAGACTG

R: ATGCCAGTGAGCTTCCCGTTCAG

Notes: RT-qPCR Reverse transcription quantitative polymerase chain reaction, F
Forward, R Reverse, miR-214 microRNA-214, ROCK1 Rho-associated kinase 1,
SOX4 SRY-box transcription factor 4, SEMA4C Semaphorin 4C, PPTC7 Protein
phosphatase targeting COQ7, GAPDH
Glyceraldehyde-3-phosphate dehydrogenase
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214 expression in rat hippocampal neurons was detected
by ISH combined with immunofluorescence assay. We
observed significantly elevated levels of miR-214 (red) in
NeuN-labeled (green) hippocampal neurons of DEX-
treated MCAO rats (Fig. 2B).

Inhibition of miR-214 expression suppresses the
ameliorating effects of DEX on CIRI
To validate whether DEX ameliorated CIRI by upregu-
lating miR-214, a rescue experiment was conducted. Rats
were intraventricularly injected with miR-214 inhibitor
and NC inhibitor half an hour before MCAO operation.

After 24 h, the neurological deficit score for rats injected
with miR-214 inhibitor was increased compared with
that in the rats injected with NC inhibitor (Fig. 3A). RT-
qPCR results displayed that miR-214 was downregulated
in the brain tissues of rats injected with miR-214 inhibi-
tor (Fig. 3B). TTC staining showed that the injection of
miR-214 inhibitor increased the area of cerebral infarc-
tion in rats (Fig. 3C). Moreover, HE staining results sug-
gested that injection of miR-214 inhibitor attenuated the
repairing effect of DEX on CIRI in MCAO rats, as evi-
denced by changed morphology of neurons in rats (Fig.
3D). Apoptosis rate of hippocampal neurons was

Fig. 1 DEX ameliorates CIRI in rats. A Neurological deficit scores for rats in each group. B Cerebral infarction area of rats detected by TTC staining.
C Damage of neurons in hippocampal regions determined by HE staining. D Apoptosis rate of neuronal cells in hippocampal regions examined
by TUNEL staining. For panel A, B, and D, comparisons were made using one-way ANOVA. * p < 0.05 compared with the sham group; # p < 0.05
compared with the MCAO group
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elevated by injection of miR-214 inhibitor, as TUNEL
staining unraveled (Fig. 3E).

miR-214 targets ROCK1
To explore the downstream target of miR-214 in
CIRI, the potential downstream target genes of miR-
214 were predicted in Starbase, TargetScan, miR-
Walk and miRDB databases (Fig. 4A). The expression
of the target genes in the intersection in the brain tis-
sues of rats injected with NC inhibitor or miR-214 in-
hibitor was detected by RT-qPCR, which revealed that
ROCK1 was the differentially expressed one (Fig. 4B).
ROCK1 expression in the hippocampus of rats
injected with NC inhibitor or miR-214 inhibitor was

detected by immunohistochemistry, which showed
that inhibition of miR-214 expression led to an in-
crease of ROCK1 protein expression (Fig. 4C). Then,
the potential binding sites between ROCK1 and miR-
214 were obtained, based on which the mutation se-
quences were designed (Fig. 4D). After the sequences
were inserted into the luciferase reporter plasmids
ROCK1-WT and ROCK1-MT, the plasmids were co-
transfected with miR-214 mimic into 293 T cells. At
48 h post co-transfection, the dual-luciferase reporter
assay results showed that overexpressed miR-214 dis-
tinctly suppressed the luciferase activity of ROCK1-
WT, but had no significant effect on the luciferase
activity of ROCK-MT (Fig. 4E).

Fig. 2 Differentially expressed miRNAs in DEX-treated rats underwent MCAO. A The differentially expressed miRNAs in the MCAO rats with or
without DEX treatment screened using microarray analysis (n = 3). B Detection of miR-214 expression in rat neurons (green) by ISH combined
with immunofluorescence staining. For panel B, comparisons were made using unpaired t test. * p < 0.05 compared with the MCAO group

Fig. 3 DEX attenuates CIRI in rats with MCAO by increasing miR-214 expression. A Neurological deficit scores for rats injected with miR-214
inhibitor. B miR-214 expression in rat brain tissues detected by RT-qPCR. C Infarction area of rats injected with miR-214 inhibitor observed by TTC
staining. D Damage of neurons in hippocampal regions determined by HE staining. E Apoptosis rate of neurons in hippocampal regions
examined by TUNEL staining. For panel A, B, C, and E, comparisons were made using unpaired t test. * p < 0.05 compared with rats injected with
NC inhibitor

Liu et al. BMC Anesthesiology          (2021) 21:203 Page 6 of 10



Overexpressed ROCK1 dampens the therapeutic effects of
DEX on CIRI through activation of the NF-κB pathway
To verify that ROCK1 was involved in the DEX-
mediated alleviation in CIRI, rats were injected with oe-
ROCK1 half an hour before MCAO operation. At 24 h
post-operation, neurological deficits scores of rats were
measured, which showed that the neurological deficit
scores for rats injected with oe-ROCK1 were higher than
those injected with oe-NC (Fig. 5A). Immunohistochem-
istry results exhibited that overexpression of ROCK1
promoted both ROCK1 expression and extent of NF-κB
phosphorylation (Fig. 5B). As TTC staining shown, over-
expression of ROCK1 increased infarction area in rats
(Fig. 5C), while HE staining presented obvious neuronal
injury in hippocampal tissues of rats injected with oe-
ROCK1 (Fig. 5D). Results of TUNEL staining suggested

that overexpression of ROCK1 induced the apoptosis of
hippocampal neurons (Fig. 5E).

Discussion
MCAO modeling has been widely used in studies on
CIRI to imitate the ischemic injury in animals [18–20].
We, therefore, performed MCAO modeling on SD rats
to establish a CIRI rat model, aiming to observe the ef-
fects of DEX treatment on CIRI and to validate the
underlying molecular mechanism. In this study, how
DEX-mediated miR-214/ROCK1/NF-κB axis regulated
the cerebral infarction area and neuronal cell apoptosis
in rats receiving MCAO were explored.
Initially, DEX treatment showed damage-relieving ef-

fects on CIRI rats induced by MCAO modeling. Thus
far, the protective effect of DEX on tissue injury has

Fig. 4 ROCK1 is the downstream target gene of miR-214. A Target genes of miR-214 predicted by Starbase, TargetScan, miRWalk and miRDB
databases. B The mRNA expression of predicted target genes in brain tissues of rats injected with miR-214 inhibitor or NC inhibitor detected by
RT-qPCR. C ROCK1 protein expression in brain tissues of rats injected with miR-214 inhibitor or NC inhibitor determined by immunohistochemistry.
D Sequences for binding sites between miR-214 and ROCK1. E Luciferase activity of ROCK1-WT and ROCK1-MT after treatment of miR-214 mimic
examined by dual-luciferase reporter assay. For panel C, comparison was made using unpaired t test. * p < 0.05 compared with rats injected with NC
inhibitor. For panel B and E, comparisons were made using one-way or two-way ANOVA, respectively. * p < 0.05 compared with rats injected with NC
inhibitor; # p < 0.05 compared with rats injected with NC mimic
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been reported in the fields of spinal cord injury, myocar-
dial IRI, as well as acute lung injury [21–23]. A preced-
ing study has demonstrated that in the rat hippocampal
neurons, DEX can relieve hypoxia/re-oxygenation injury
through suppression of mitochondrial fission and apop-
tosis [24]. Specifically, DEX plays a neuroprotective role
against damage induced by intracerebral hemorrhage in
the CA1 region of hippocampus [25]. Our experimental
statistics further depicted that DEX treatment reduced
cerebral infarction area and suppressed neuronal apop-
tosis in MCAO-modeled rats. Similarly, post-
conditioning of DEX has already been found to confer
therapeutic impacts on CIRI by decreasing infarction
area [26, 27]. Besides, it has also been observed that

DEX relieves neuronal injury in the rat hippocampus
through reduction of neuronal cell apoptosis [28]. These
references further substantiated our results that DEX
has the potency to alleviate CIRI.
Our further analyses revealed that miR-214 expression

was elevated by DEX treatment in MCAO rats. Accumu-
lating evidences addressed that miRNAs are significant
in terms of disease therapy, and miRNA-based therapy is
more ideal in gene silencing due to its lower toxicity [29,
30]. miR-214 is a member belonging to the vertebrate-
specific family [31], which is involved in peripheral nerve
regeneration [32], neural stem cell proliferation [33], as
well as therapy of Huntington’s disease, a neurodegener-
ative disease [34]. Similar to our study, miR-214 is

Fig. 5 Overexpression of ROCK1 aggravates CIRI in MCAO rats by increasing the extent of NF-κB phosphorylation. A Neurological deficit scores
for MCAO rats injected with oe-ROCK1. B ROCK1 expression and extent of NF-κB phosphorylation in rat hippocampal neuronal cells determined
by immunohistochemical staining. C Infarction area of rats injected with oe-ROCK1 observed by TTC staining. D Damage of neurons in
hippocampal regions determined by HE staining. E Apoptosis rate of neuronal cells in hippocampal regions examined by TUNEL staining. For
panel A, C, and E, comparisons were made using unpaired t test. * p < 0.05 compared with rats injected with oe-NC. For panel B, comparison was
made using two-way ANOVA. * p < 0.05 compared with rats injected with oe-NC
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upregulated by DEX treatment in steroid-induced avas-
cular necrosis of the femoral head in a dose-dependent
fashion [35]. However, the impacts of DEX-mediated
miR-214 were rarely discussed in CIRI previously. In our
study, results of TTC and TUNEL assays fully described
that inhibition of miR-214 distinctly weakened the thera-
peutic effects of DEX on neuronal damage in vivo. To
our knowledge, we may be the first one reporting that
DEX could upregulate miR-214 during the process of
CIRI.
The downstream target gene of miR-214 was subse-

quently explored. We found that miR-214 targeted
ROCK1 and negatively regulated the ROCK1 expres-
sion. ROCK1 is one of the factors promoting neur-
onal loss in MCAO-modeled rats, which increases
infarction area [36]. The targeting relationship be-
tween miR-214 and ROCK1 has been investigated in
osteosarcoma and hepatocellular carcinoma cells [11,
37]. However, few works investigated the role of miR-
214/ROCK1 axis in CIRI. In the present study, miR-
214 negatively regulated ROCK1 in CIRI through dir-
ect binding. ROCK1 has been reported to be targeted
by many miRNAs in CIRI. For instance, miR-136-5p
bound to ROCK1 in CIRI, and overexpressed miR-
136-5p led to a reduced ROCK1 expression [38]. In
our next action, ROCK1 was detected to enhance the
extent of NF-κB phosphorylation. Depletion of NF-κB
p65 protein has been revealed to alleviate inflamma-
tory response in CIRI [39]. In contrast, highly
expressed NF-κB boosts apoptosis in oxygen-glucose
deprivation and reoxygenation (OGD/R) cell model
[40]. ROCK1 is closely associated with NF-κB activity
under different conditions, such as hepatocellular car-
cinoma [41], pulmonary fibrosis [42], and arthritis-
induced brain cognitive impairment [43]. Coinciden-
tally, a prior work has mentioned that ROCK1 coop-
erates with the NF-κB pathway to mediate ischemic
stroke [44].

Conclusion
Collectively, DEX treatment has the potency to attenuate
cerebral infarction and suppress apoptosis of neurons in
rats with CIRI. Our data suggested that DEX might be a
candidate drug to treat CIRI. Additionally, we proposed
that miR-214 might play a key role in the protection of
DEX against CIRI by associating with ROCK1 and the
NF-κB pathway in MCAO-modeled rats. Also, our study
highlighted the significance of miR-214 for DEX-based
CIRI treatment, which may inspire future works on the
effect of overexpressed miR-214 on CIRI therapy. How-
ever, more efforts are needed to be paid on the valid-
ation of miR-214/ROCK1/NF-κB axis on CIRI in vitro,
for instance, by establishing an OGD/R cell model.
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