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Lidocaine combined with magnesium
sulfate preserved hemodynamic stability
during general anesthesia without
prolonging neuromuscular blockade: a
randomized, double-blind, controlled trial
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Abstract

Background: Lidocaine and magnesium sulfate have become increasingly utilized in general anesthesia. The
present study evaluated the effects of these drugs, isolated or combined, on hemodynamic parameters as well as
on the cisatracurium-induced neuromuscular blockade (NMB).

Methods: At a university hospital, 64 patients, ASA physical status I and II, undergoing elective surgery with similar
pain stimuli were randomly assigned to four groups. Patients received a bolus of lidocaine and magnesium sulfate
before the tracheal intubation and a continuous infusion during the operation as follows: 3 mg.kg− 1 and 3
mg.kg− 1.h− 1 (lidocaine - L group), 40 mg.kg− 1 and 20 mg.kg− 1.h− 1 (magnesium - M group), equal doses of both
drugs (magnesium plus lidocaine - ML group), and an equivalent volume of isotonic solution (control - C group).
Hemodynamic parameters and neuromuscular blockade features were continuously monitored until spontaneous
recovery of the train of four (TOF) ratio (TOFR > 0.9).

Results: The magnesium sulfate significantly prolonged all NMB recovery features, without changing the speed of
onset of cisatracurium. The addition of lidocaine to Magnesium Sulfate did not influence the cisatracurium
neuromuscular blockade. A similar finding was observed when this drug was used alone, with a significantly smaller
fluctuation of mean arterial pressure (MAP) and heart rate (HR) measures during anesthesia induction and
maintenance. Interestingly, the percentage of patients who achieved a TOFR of 90% without reaching T1–95% was
higher in the M and ML groups. Than in the C and L groups. There were no adverse events reported in this study.
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Conclusion: Intravenous lidocaine plays a significant role in the hemodynamic stability of patients under general
anesthesia without exerting any additional impact on the NMB, even combined with magnesium sulfate. Aside
from prolonging all NMB recovery characteristics without altering the onset speed, magnesium sulfate enhances
the TOF recovery rate without T1 recovery. Our findings may aid clinical decisions involving the use of these drugs
by encouraging their association in multimodal anesthesia or other therapeutic purposes.

Trial registration: NCT02483611 (registration date: 06-29-2015).
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Background
Anesthetic additive drugs, such as lidocaine and magne-
sium sulfate (MS), have become increasingly utilized, ei-
ther alone or in combination, in general anesthesia for
postoperative pain reduction, achievement of reduced
and more balanced anesthetic doses, hemodynamic
stabilization, and improvement of surgical conditions [1,
2]. Opioid-sparing or opioid-free anesthesia is a rela-
tively new strategy that is increasingly being used in
daily anesthesia practice [3]. A combination of lidocaine
and magnesium sulfate in a multimodal opioid-sparing
or even opioid-free anesthetic approach may reduce or
eliminate the use of opioids in the perioperative period
[4, 5]. Drugs such as lidocaine and magnesium sulfate
are frequently used in combination with neuromuscular
blocking agents (NMBAs) [6], the latter of which may
contribute to residual neuromuscular blockade (NMB).
It is a well-known [7] and ongoing problem [8] that
NMBAs have the inherent risk of residual paralysis [9],
even when used alone [10]. Furthermore, residual paraly-
sis is most likely associated with postoperative pulmon-
ary complications, which has also been well known for
many years [11] but has still not been resolved [12].
Magnesium sulfate infusion administered before

anesthesia has been found to increase the speed of onset
of a rocuronium-, cisatracurium- or vecuronium-
induced NMB without necessarily enhancing its duration
[13, 14]. Furthermore, magnesium sulfate infusion re-
establishes a clinically relevant degree of muscle paraly-
sis in patients who have recovered from paralysis and
causes a significant, prolonged NMB when induced by a
single dose of the neuromuscular-blocking drug rocuro-
nium [15].
The effects of lidocaine on NMB are still under debate.

Previous studies have shown that local anesthetics, such
as lidocaine, interact with NMBAs [16–18]. More recent
studies evaluating the clinical effects of lidocaine, at
lower dosages, on the NMBAs cisatracurium and rocur-
onium have demonstrated no changes in the recovery of
NMB characteristics or speed of onset [19–21].
Considering the growing perioperative clinical applica-

tions of both lidocaine and magnesium sulfate, the possi-
bility of using these drugs in combination increases. A

combination of these drugs may not only be beneficial
for surgical patients regarding opioid-sparing effects but
may also influence NMB characteristics and promote
changes in hemodynamic parameters. The main object-
ive was to evaluate whether the use of additional lido-
caine could influence the NMB enhancement. Thus, this
study’s primary endpoint was the time at which spontan-
eous recovery of a train-of-four (TOF) ratio of 90% was
achieved (complete duration). The secondary endpoints
were other NMB characteristics (onset time, duration
25, duration 95) and hemodynamic parameters.

Methods
In this prospective, randomized, double-blind, controlled
trial, sixty-six patients [American Society of Anesthesiol-
ogists (ASA) physical status I to II, aged 18 to 60 years]
were recruited who were scheduled for surgery (esti-
mated surgical time greater than 90min, with a similar
pain stimulus and no need for a continuous neuromus-
cular block during the surgical procedure). The exclu-
sion criteria were patients with diseases or on
medications known to interfere with neuromuscular
transmission, hepatic or renal dysfunction, electrolyte
abnormalities (hypokalemia, hypocalcemia and hyper-
magnesemia, which can potentiate blockade), allergy to
drugs used in the study, a body mass index < 18 or > 29
kg.m− 2, and expected difficulties during mask ventilation
or intubation (mouth opening and head and neck move-
ment limitations, a short thyromental and sternomental
distance, and a history of difficult intubation), as well as
patients who were pregnant or breastfeeding.
The patients were randomly and equally allocated into

four groups (Fig. 1). Computer-generated randomization
was performed, and allocation was concealed with se-
quentially, numbered, sealed, opaque envelopes. The seal
of the envelope was broken before the induction of gen-
eral anesthesia by trained study personnel not involved
in the data collection. Throughout the perioperative
period, care providers, patients, and research team mem-
bers were blinded to the group assignment. The L group
received 3 mg.kg− 1 lidocaine as an IV bolus before the
induction of anesthesia and 3mg.kg− 1.h− 1 lidocaine via
IV continuous infusion during the operative period, and
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the M group received 40mg.kg− 1 magnesium sulfate as
an IV bolus before the induction of anesthesia and 20
mg.kg− 1.h− 1 magnesium sulfate via IV continuous infu-
sion during the operative period. The ML group received
equal doses of magnesium sulfate combined with lido-
caine at the same conditions during the operative period,
and the control group received an equivalent volume of
isotonic solution.
Patients were monitored using electrocardiography,

noninvasive blood pressure, pulse oximetry, capnogra-
phy, and body temperature (Dixtal Biomedical Industry
e commerce, Brazil). Total intravenous anesthesia
(TIVA) was standardized for all patients and performed
without the use of benzodiazepines, using a propofol tar-
get dose (plasma targeting, Injectomat TIVA Agilia,
Brazil) of 4 μg·mL− 1 and a remifentanil infusion of 0.5
mg·kg− 1·min− 1. After induction, the propofol infusion
target was decreased to 2.5 μg·mL− 1, and infusion of
remifentanil was adjusted to 0.1–0.3 μg·kg− 1·min− 1 as
needed. If systolic arterial pressure (SAP) or heart rate
(HR) increased or decreased by > 30% of baseline for >
60 s, remifentanil infusion was respectively increased/de-
creased at 0.05 μg kg− 1 min− 1 until achieving the goal
value within the range. If necessary, an ephedrine bolus
(2.5 to 5 mg) was allowed. Hemodynamic parameters
were considered stable when blood pressure and HR
were within 20% of baseline values.
After induction of anesthesia and loss of conscious-

ness, neuromuscular function was assessed by monitor-
ing the adductor pollicis muscle via acceleromyography
(AMG) with a TOF-Watch SX device (Organon Ireland
Ltd., a subsidiary of Merck & Co., Inc., Swords, Co.,
Dublin, Ireland) according to the neuromuscular re-
search consensus [22].
The monitoring system was positioned on the side

opposite to the blood pressure cuff and IV line.
Pediatric surface electrodes (Red Dot®, 3 M Health

Care, Neuss, Germany) were placed on cleaned skin
over the ulnar nerve on the volar side of the wrist.
The transducer’s position was secured by placing the
thumb in a hand adapter, and a temperature sensor
was fixed at the distal end of the forearm. TOF
stimulation tracing was stabilized by administering
TOF repetitive stimulation for 1 min, followed by 5 s
of 50-Hz tetanus stimulation and another period of
repetitive TOF stimulation for 3–4 min. The CAL 2
mode was used to determine the supramaximal
threshold and to calibrate the transducer of the accel-
erometer. After device calibration and stabilization,
the mean of three TOF values was recorded in each
patient and used as a reference. Complete recovery
was assumed when the TOF ratio (TOFR) reached
90% of the preoperatively defined reference value
(normalization). The same procedure was performed
for the T1 measurements, assuming T1 response re-
covery as 95% of its initial value. Then, bolus doses
of solutions were administered to assigned groups
over 5 min. Subsequently, single twitches were moni-
tored to measure the onset time of cisatracurium
(0.15 mg.kg− 1 administered over 5 s; time point zero).
Tracheal intubation was performed when TOFR
reached zero. Values of T1, T2, T3, T4, and TOFR
(T4/T1); twitch responses in relation to the reference
twitch response given in %; and skin temperature
were also recorded. Patients were monitored until
they achieved spontaneous recovery from NMB
(TOFR = 0.9). No additional cisatracurium injections
were permitted. After measuring the onset time, the
stimulation mode was changed to TOF (2 Hz, stimu-
lus duration of 200 μs, square wave, 15-s intervals).
All neuromuscular monitoring data were transferred

in real-time and stored on a laptop using the TOF-
Watch SX monitor computer program (version 2.5.INT;
Organon Ltd., Dublin, Ireland).

Fig. 1 Flow chart of patient participation. C: control group; M: magnesium sulfate group; ML: magnesium sulfate combined with lidocaine group
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The following variables were measured:
(1) onset time 5 (time [min] from injection to T1 re-

sponse < 5% of T0); (2) duration 25 (time [min] to spon-
taneous recovery of T1 to 25%); (3) recovery index (time
[min] between T1 = 25% and T1 = 75%); (4) duration 95
(time [min] from injection to spontaneous recovery of
T1 to 95%); and (5) complete duration (time [min] from
injection to spontaneous recovery of TOFR> 0.9).
Hemodynamic parameters (systolic, diastolic, mean

blood pressure and heart rate) were recorded and anno-
tated at various times: M1- when the patient arrived in
the operating room; M2- immediately before induction
of anesthesia; M3- before the infusion of the tested solu-
tions (saline, magnesium sulfate or magnesium sulfate
associated with lidocaine); M4- five minutes after M3
(end of the infusion loading dose of test solutions); M5-
immediately before intubation; M6- one minute after
tracheal intubation; and M7- every fifteen minutes until
the end of the study. Heating elements were used to
maintain the skin and central temperatures above 32
and 36 °C, respectively. All unexpected events that oc-
curred during the study were recorded as adverse
effects.
The Shapiro-Wilk test was used to assess normality.

The clinical and demographic characteristics are
expressed as the means ± SD or medians (IQR [range])
and were compared by analysis of variance, the Kruskal-
Wallis test, or the chi-square test where appropriate.
The area under the curve (AUC) was assessed to com-
pare the hemodynamic responses between the study
groups [23]. The pharmacodynamic variables (i.e., speed
of onset, clinical duration, recovery rate, and complete
duration) are represented as box-and-whisker plots
showing the range, quartiles, and medians. The AUCs of
the changes in mean arterial pressure (MAP) and HR
are expressed as 95% confidence intervals (normally dis-
tributed data). The pharmacodynamic variables were
compared between the groups via the Kruskal-Wallis
test, followed by Dunn’s multiple comparison test. The
AUCs of the changes in MAP and HR were compared
between the groups by one-way ANOVA followed by
the Tukey multiple comparison test. Both multiple com-
parison tests were used to control the type I error at 5%.
The percentages of patients who achieved a TOFR of
90% without reaching 95% recovery of the first twitch
(T1) response were compared between the groups by
the chi-square test. A p-value < 0.05 was considered sta-
tistically significant for all outcome variables.
The primary endpoint of the present study was the

time at which spontaneous recovery of a train-of-four
(TOF) ratio of 90% was achieved (complete duration).
Therefore, for the sample size calculation, we considered
a previous study showing that magnesium sulfate pro-
longed the complete duration of rocuronium-induced

NMB [13]. Having chosen a significance level of 5% and
a power of 80%, we applied the Satterthwaite’s approxi-
mation [24]. The result revealed N = 14 patients per
group, and we decided to randomized 16 patients in
each group to allow for drop-outs. The statistical ana-
lysis plan has been added as a supplement file.

Results
Between 2015 and 2018, 64 patients were recruited and
randomized in this study. The patient characteristics are
shown in Table 1. The vast majority of patients were
ASA1, who underwent rhinoplasty and reductive masto-
pexy. There was no significant difference in the baseline
variables between the groups. After data collection, one
patient was excluded from the control group because
her surgical procedure was completed in less than 90
min (Fig. 1).
Magnesium sulfate significantly prolonged all NMB re-

covery features, without changing the speed of onset of
cisatracurium (Table 2). The addition of lidocaine to MS
did not influence the cisatracurium NMB. Similar find-
ings were observed when this drug was used alone.
The hemodynamic parameters among the study

groups, evaluated by the AUCs for changes in MAP and
HR at the six times points during anesthesia induction,
are shown in Fig. 2 (a-d). The lidocaine group presented
a significantly smaller fluctuation of MAP and HR mea-
sures during anesthesia induction (total AUC [95% con-
fidence interval; p]: MAP- L Group, 18.4 [0.0–41.3],
compared with the C group, 59.9 [34.7.0–88.1], p <
0.0001; compared with the M group, 52.2 [32.3–72.0],
p < 0.0001; compared with the ML Group, 50.3 [32.3–
68.4], p < 0.0001, and HR- L Group, 4.9 [0.0–15.3] com-
pared with the C group, 17.9 [0.0–47.4], p < 0.0001;
compared with the M group, 23.0 [1.7.-44.4], p < 0.001;
compared with the ML Group, 14.9 [0.0–37.2], p <
0.046). During the maintenance phase of anesthesia, the
study groups exhibited a similar behavior (MAP- L
Group, 1265 [583.5–1946] compared with the C group,
2256 [1529–2983], p < 0.021; compared with the M
group, 1891 [1334–2448], p < 0.0001; compared with the
ML Group, 1837 [1338–2335], p < 0.0001 and HR- L
Group, 533.0 [259.8–806.1] compared with the C group,
795.8 [125.2–1466], p < 0.01; compared with the M

Table 1 Clinical and demographic characteristics of the patients

C (n = 16) L (n = 16) M (n = 16) ML (n = 16) p value

Age (years) 36 + 11 34 + 9 34 + 11 32 + 9 NS

Gender(F/M) 7/8 8/8 8/8 8/8 NS

ASA PS I/II 14/1 14/2 14/2 13/3 NS

BMI(Kg/m2) 24.1 + 3.3 24.9 + 3.4 25.7 + 3.4 23.2 + 2.6 NS

ASA PS American Society of Anesthesiologists phyical status, BMI body mass
index, C control group, L lidocaine group, M magnesium sulfate group, ML
magnesium sulfate plus lidocaine group. Values are the mean + S.D.
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group, 1035.0 [360.8–1708], p < 0.001; compared with
the ML Group, 828.3 [294.0–1363], p < 0.0043).
Interestingly, the percentage of patients who achieved

a TOFR of 90% without reaching T1–95% was higher in
the M and ML groups compared with the C and L
groups (50.0, 56.2 and 20.0%, 25.0%, respectively). There
were no adverse events reported in this study.

Discussion
The main findings of the study showed the following: (a)
intravenous lidocaine plays a significant role in the

hemodynamic stability of patients under general
anesthesia, without exerting any additional impact on
the NMB even when combined with magnesium sulfate;
(b) magnesium sulfate prolonged the time of recovery
from NMB in all pharmacodynamic parameters studied;
and (c) there were no differences in the speed of onset
of NMB between groups.
The concept of multimodal general anesthesia has re-

cently extended the idea of balanced anesthesia, includ-
ing the use of some other additional drugs such as
lidocaine, magnesium sulfate, β–blockers, and α2-

Table 2 Neuromuscular blockade recovery characteristics

Control Lidocaine Magnesium Magnesium + Lidocaine p

onset time 5 144 (120–165[min]) 135 (117–155[min]) 145 (116–177[min]) 138 (109–168[min]) > 0,05

duration 25 64 (57–70[min]) 69 (63–79[min]) 82 (76–91[min]) 85 (82–88[min]) < 0,0001

recovery index 14 (14–16[min]) 16 (11–19[min]) 24 (16–30[min]) 20 (18–26[min]) < 0,0001

duration 95 87 (66–90[min]) 88 (81–101[min]) 109 (104–126[min]) 113 (95–117[min]) < 0,0001

complete duration 89 (76–99[min]) 104 (93–107[min]) 119 (110–129[min]) 123 (111–140[min]) < 0,0001

Values are medians (Interquartile range [min])

Fig. 2 Area under the curve (AUC) of hemodynamic parameters. a AUC of the mean arterial pressure (MAP) in the induction period. b AUC of
the MAP during the maintenance period. c AUC of heart rate (HR) in the induction period. d AUC of HR during the maintenance period. C:
control group; M: magnesium sulfate group; ML: magnesium sulfate combined with lidocaine group. Values are the mean change and 95% CI
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agonists, which target different neuroanatomical circuits
and multiple neurophysiological mechanisms [25]. The
pharmacological explanation of the multimodal general
anesthesia approach is based on the firmly established
observation that when anesthetic drugs of different
mechanisms are combined, they typically interact syner-
gistically [26]. Lidocaine and magnesium sulfate indir-
ectly block sympathetic effects and are well established
in opioid-sparing multimodal analgesic strategies [27].
Parenteral magnesium facilitates an NMB by decreasing
pre-junctional release of acetylcholine via inhibition of
voltage-dependent calcium channels [28]. Typically,
magnesium sulfate is administered as a bolus dose of
30–50mg.kg− 1, followed by a maintenance dose of 6–
20mg.kg− 1.h− 1 [29]. The results of this study were in
accordance with previous studies concerning the pro-
longation of NMB by magnesium [13, 30, 31].
Contradictory findings have been reported concerning

whether the NMB onset time was reduced by magne-
sium sulfate. Preadministration of MS infused over 10
min has been shown to reduce the onset time of rocuro-
nium and vecuronium [30, 32], while a short period of
infusion left the neuromuscular blockers’ latency un-
changed, in accordance with our findings [33, 34]. These
findings possibly reflect differences in NMBA pharmaco-
dynamic properties, and the higher infusion time seemed
to prolong the drug’s action.
Interestingly, many patients in magnesium sulfate infu-

sion groups reached 90% of their initial TOF response
without recovery of T1 to 95% of its original value.
Staals et al [35] reported findings similar to ours after
reversing rocuronium-induced NMB with sugammadex.
Especially when using AMG devices, a TOFR of 0.9
seems to be associated with insufficient recovery of
neuromuscular function [36, 37].
Perioperative IV administration of lidocaine varies

among studies based on the dose of lidocaine bolus (1–
5mg kg− 1), maintenance infusion (1–6mg kg− 1 h− 1) and
duration of infusion [2, 38]. However, the use of doses
and lidocaine as high as 5 mg.kg.h− 1 infused for 6 h is
reported without adverse effects [39]. Typically, the lido-
caine dose used in studies assessing its impact on NMB
[19–21] has been between 1.5 and 2mg.kg− 1 (bolus) and
2mg.kg− 1.h− 1 (maintenance), and results similar to ours
were reported in these studies. Although lidocaine is
widely used and is especially useful as an adjuvant dur-
ing general anesthesia due to its analgesic and opioid-
sparing effects, few studies have systematically assessed
the incidence of adverse effects or optimal dose [2]. We
have considered using high doses to evaluate possible
hemodynamic changes. Some studies have shown some
interactions between local anesthetics and NMBAs [16–
18, 40]. However, more recently, studies evaluating the
clinical effects of lidocaine on cisatracurium- and

rocuronium-induced NMB have demonstrated no
changes in NMB recovery characteristics or speed of on-
set periods [19–21]. Corroborating these observations, in
the present study, even lidocaine infusion at higher
doses did not result in any additional effects on NMB
and reduced MAP and HR fluctuations. Importantly, this
hemodynamic stability is particularly relevant in specific
conditions, such as in intracranial aneurysm manage-
ment [38].
Surgical patients need to be fully awake in the recovery

ward postoperatively, with acceptable pain levels and
without respiratory depression, especially for patients
with morbid obesity or obstructive sleep apnea [41]. It is
also known that opioids present side effects, including
postoperative nausea and vomiting, shivering, ileus, and
urine retention [42], and can achieve both short-lasting
analgesia and long-lasting hyperalgesia due to their up-
regulation of compensatory pronociceptive pathways
[43].
Therefore, opioid-free or opioid-reduced anesthesia

procedures are justified and have gained increasing
popularity [44, 45]. Given these new situational demands
for anesthesia and pain control protocols, evidence that
lidocaine can provide hemodynamic stability during
anesthesia and that its addition to magnesium sulfate
does not add any side effects is valuable. These findings
may encourage the use of lidocaine infusion alone or
combined with magnesium sulfate in clinical practice for
various therapeutic purposes, including opioid-free/spar-
ring anesthesia with or without NMBA. The mecha-
nisms and the precise dosage regimen for the
hemodynamic stability provided by lidocaine warrant
further research.
Our study has some limitations. The actual plasma

concentrations of cisatracurium were not measured.
However, we chose this nondepolarizing NMBA because
its duration of action has low inter-individual variability.
All groups have been treated with remifentanil intraop-
eratively and, assuming that Mg and lidocaine have anal-
gesic effects, the infusion rate of remifentanil may have
not been adjusted accordingly. Therefore, we cannot
completely rule out a possible interference of this drug
on the hemodynamic results shown in this study.

Conclusions
Intravenous lidocaine plays a significant role in the
hemodynamic stability in adult patients under general
anesthesia without exerting any additional impact on the
NMB, even when combined with magnesium sulfate.
Aside from prolonging all NMB recovery characteristics
without altering the onset speed, magnesium sulfate en-
hances the TOF recovery rate without T1 recovery. Our
findings may aid clinical decisions involving the use of
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these drugs by encouraging their association in multi-
modal anesthesia or other therapeutic purposes.
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