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Anesthetics may modulate cancer surgical
outcome: a possible role of miRNAs
regulation
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Abstract

Background: microRNAs (miRNAs) are single-stranded and noncoding RNA molecules that control post-
transcriptional gene regulation. miRNAs can be tumor suppressors or oncogenes through various mechanism
including cancer cell biology, cell-to-cell communication, and anti-cancer immunity.

Main Body: Anesthetics can affect cell biology through miRNA-mediated regulation of messenger RNA (mRNA).
Indeed, sevoflurane was reported to upregulate miR-203 and suppresses breast cancer cell proliferation. Propofol
reduces matrix metalloproteinase expression through its impact on miRNAs, leading to anti-cancer
microenvironmental changes. Propofol also modifies miRNA expression profile in circulating extracellular vesicles
with their subsequent anti-cancer effects via modulating cell-to-cell communication.

Conclusion: Inhalational and intravenous anesthetics can alter cancer cell biology through various cellular signaling
pathways induced by miRNAs’ modification. However, this area of research is insufficient and further study is
needed to figure out optimal anesthesia regimens for cancer patients.
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Background
Surgery is the frontline treatment of solid cancers
worldwide. Over 60% of cancer patients require gen-
eral anesthesia for primary surgical resection [1].
Unfortunately, most patients still die due to cancer
recurrence following surgery [2]. Postsurgical death
is the third most common type of death behind the
death from cardiovascular disease and stroke and
contributes to 7.7% of deaths globally [3] and most
those patients are cancer suffers per se. Postopera-
tive cancer recurrence often occurs in high

malignancy of cancer cell phenotype but periopera-
tive risk factors may also contribute to its recur-
rence. For example, surgical stress activates neural
and inflammatory cellular signaling that can suppress
anti-tumor immunity, increase cancer cell growth
and their shedding into blood circulation, and pro-
mote cancer cell adhesion residence in remote or-
gans, all of which contribute to tumor recurrence
[4–6]. Anesthetics may be also a risk factor due to
their direct immunomodulation or indirect cellular
signaling effects [7]. Indeed, pre-clinical and retro-
spective studies indicated that some anesthetics such
as inhalational agents may promote cancer cell
growth, whereas others such as propofol and mid-
azolam inhibit cancer cell growth and hence may be
beneficial for cancer patients [8–10]. The molecular
mechanisms behind these clinical findings are largely
unknown.
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microRNAs (miRNAs) are single-stranded and non-
coding RNA molecule with 20–25 nucleotides and par-
ticipate post-transcriptional gene regulation of mRNA
via mRNA degradation and translational repression. In
human, there are more than 1500 miRNAs but their
roles in normal and pathological cellular function re-
main yet to know. Previous study demonstrated that
miRNAs modulate various cell biology, including cell
differentiation, proliferation, apoptosis, embryonic devel-
opment, stress response, stem cell renewal, and metabol-
ism [11–15].
It has been suggested that anesthetics, can both posi-

tively and negatively influence on cancer surgical out-
come through miRNA changes. Previous in vitro studies
showed that inhalational and intravenous anesthetics
have both pro- and anti-cancer effects through various
pathways of cancer cell biology, anti-cancer immunity,
and cell-to-cell communication via miRNA expression
changes. In this review, the effects of anesthetics effects
on cancer cell phenotyping changes via miRNA modula-
tion will be narratively summarised; their other effects
on cancer cell biology through other cellular signaling

pathways have been well documented recently [7, 16, 17]
will be repeated again here.

Main Body
miRNA in oncogenesis
One miRNA can have an average of more than 100 tar-
gets [18], and multiple miRNAs can affect the expression
of a single transcript target [19]. The overview of mRNA
regulation of miRNA is shown in Fig. 1. Thus, minor
variations in miRNA expression may have crucial conse-
quences for malignant transformation and cancer cell
activity whilst miRNA alterations may involve in the ini-
tiation and progression of human cancer [20]. miRNAs
also influence on numerous oncogenesis processes, such
as cellular metabolism, differentiation, proliferation, cell
cycle control, apoptosis and migration [21–23]. The role
of miRNAs in chronic lymphocytic leukaemia patients
was reported in 2002 [24], disclosing that miRNAs are
associated with the occurrence and progression of vari-
ous cancers. It is known that miR-133 regulates cancer
cell apoptosis with suppression of caspase-9 [25]
whereas miR-24 enables cancer cells to survive by

Fig. 1 Overview of mRNA regulation by miRNA. When some stimuli including anesthesia come to the cell nucleus, pre-miRNA is made from
nucleus DNA by Drosha cleavage. Pre-miRNA is cleaved by Dicer/TRBP complex and becomes mature miRNA after miRNA/miRNA duplex. miRISC
is formed by Ago1–4 binding to mature miRNA, out of which Ago2 is the essential for the target mRNA cleavage. Some miRISC can move out of
the cells in MV or exocytosis in the endosome. miRISC inhibits its target mRNA expressions in three ways, depending on the sequence
complementarity to the target mRNA sequence; mRNA cleavage with the subsequent RNA degradation occur in full complementarity,
transcriptional repression or deadenylation in partial complementarity. The target protein expressions decrease due to mRNA inhibition by
miRISC, leading to cell activity suppression. miRNA: micro RNA, Pri-miRNA: primary miRNA, Pre-miRNA: precursor miRNA, TRBP: transactivation
response element RNA-binding protein, RISC: RNA-induced silencing complex, miRISC: miRNA-induced silencing complex, MV: microvesicle,
mRNA: messenger RNA, CCR4-NOT: carbon catabolite repression-negative on TATA-less

Ishikawa et al. BMC Anesthesiology           (2021) 21:71 Page 2 of 12



targeting X-linked inhibitor of apoptosis (XIAP) [26]
which suppresses apoptosis by downregulation of cas-
pases. miR-372 was reported to exert tumor-promoting
roles and its upregulation was correlated with the tumor
node metastasis stage in patients with hepatocellular
carcinoma [27].
Previous studies indicated that these miRNAs could

modulate cancer microenvironment or tumor transform-
ation. miR-21 overexpression promoted tumorigenesis in
prostate [28] and cervical [29] cancers. Also, miR-21 up-
regulation increased chemoresistance in lung adenocar-
cinoma [30], invasiveness and angiogenesis in renal
carcinoma [31] and lymphoma [32]. miR-125a also mod-
ulated the chemo-sensitivity in breast cancer [33, 34],
and promoted tumorigenesis of colon cancer [35]. miR-9
increased tumorigenesis, angiogenesis and metastasis in
breast [36, 37], liver [38] and pancreas cancer [39] and
squamous cell carcinoma [40]; in contrast, miR-9 was
also reported to suppress angiogenesis and metastasis of
melanoma [41], gastric [42] and nasopharyngeal cancers
[43]. miR-455-3p enhanced invasiveness of breast cancer
[44, 45], regulated the cell proliferation and migration of
lung cancer [46], supressed tumorigenesis in prostate
[47] and colon cancer [48, 49]. Clearly, different miRNAs
have different roles in different cancers in terms of
development and progression.
Early diagnosis of cancer is often difficult because of

the poor sensitivity of current tumor markers but miR-
NAs may be expected to become early detection markers
for tumors. Generally, when the pro-cancer miRNAs are
highly expressed, the suppressor miRNAs show low
expression. These dysregulated-miRNA expressions ap-
pear to be specific pattern of each cancer type. There-
fore, the cancer-specific miRNA profiles are increasingly
used in the clinical cancer diagnosis. Some circulating
miRNAs are already evidenced as potential early diag-
nostic biomarkers in the cancers of breast [50], colorec-
tum [51], pancreas [52], and liver [53].

miRNA and cancer outcome
Several miRNAs are reported to be correlated to clinical
cancer outcomes. However, the miRNAs can be as
onco-miR or anti-onco-miR depending on cancer types.
Among onco-miRs, miR-21 is widely recognized as the
onco-miR in any cancer types per se. Several clinical re-
ports revealed that the upregulation of miR-21 expres-
sion in cancer tissue and blood was positively related
with chemoresistance, poor progression-free survival,
worse overall survival in breast [54], pancreas [55], rectal
[56], squamous cancer [57], colorectal [58], lung [59],
renal cancers [60] and lymphoma [61]. miR-125 was also
reported as an onco-miR among the cancer patients with
squamous cancer carcinoma [62], gastrointestinal stro-
mal tumor [63], oesophagus cancers [64], whereas it was

recognised as an anti-onco-miR among cervical [65],
gallbladder [66] and colorectal cancers [67]. Similarly,
miR-9 was documented as an onco-miR in breast cancer
[68], glioma [69] and lymphoma [70], but as anti-onco-
miR in oral squamous carcinoma [71]. Also, miR-455-3p
was shown to be as an onco-miR in glioma [72], but as
anti-onco-miR in liver [73], breast [44] and lung cancer
[46] and osteosarcoma [74]. Thus, each cancer type has
its own onco-miRs and anti-miRs and each individual
miRNA can be pro- and anti-cancer modulator in
different cancers.

miRNA as a therapeutic target
miRNAs also can be the therapeutic targets of cancers.
One of the pivotal advantages of miRNAs as therapeutic
targets is the capability of multiple regulations in several
pathways, which is favourable to the efficient regulation
of cancer cell biology. For example, silencing oncogenic
miR-21 with antisense oligonucleotides promotes cancer
cell apoptosis and suppressed proliferation in vitro, and
reduced tumor mass volume in vivo [75]. Moreover, a
chemotherapy agent based on a miR-34a mimic
(MRX34) has reached out to the phase I clinical trial
[76]. miR-34a is known as one of tumor miRNA
suppressors, downregulating over 30 major oncogenes
including TP-53 [77] and Programmed death-ligand 1
(PD-L1) [78, 79]. Clinical histology analysis showed that
the reduced miR-34a expression in the primary tumor
tissue was related with higher TP-53 expression in
glioma [80], chemoresistance in breast cancer [81], and
worse mortality in colon [82], prostate [83] and ovarian
cancer patients [84]. From numerous in vitro studies,
miR-34a can regulate vital oncogenesis processes, e.g.
cancer apoptosis, chemoresistance, proliferation, migra-
tion and invasion in the cell lines of brain [77, 78, 85],
esophagus [86], stomach [87], lung [88], breast [89, 90],
prostate [91, 92], ovary [93] and leukaemia [94, 95].
Several in vivo studies suggested that miR-34a derivative
treatment supressed tumor growth [96, 97], metastasis
[98] and improved survival [99, 100]. The results of a
phase I clinical trial of MRX34, miR-34a mimic con-
firmed the acceptable safety for 85 patients with hepatic
primary/metastatic solid tumors and mild hepatic dys-
function [76]. Those patients received with several doses
of MRX34 treatments (50 (n = 4), 70 (n = 16), 93 (n = 16)
and finally 110 mg·m− 2 (n = 9)) with dexamethasone in
3 + 3 dose-escalation cohorts. The severe side effects
were fever (grade 3, 4%), chills (14%), fatigue (9%), and
back pain (5%). Four participants resulted in death due
to bloody diarrhea with worsening respiratory dysfunc-
tion, multiple organ failure by disease progression, sub-
stantial brain metastasis, and cytokine release syndrome
after bronchial hemorrhage, respectively. Biopsy evi-
denced the direct delivery of miR-34a to tumor cell
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cytoplasm by MRX34 treatment, whereas miR-34a target
oncogenes were significantly suppressed in peripheral
leukocytes in MRX34 dose-dependent manner (com-
pared to pre-dose level, the combined mRNA expres-
sions of B-cell lymphoma 2 (BCL2), DnaJ homolog
subfamily B member 1 (DNAJB1), Catenin Beta 1
(CTNNB1), Forkhead box protein P1 (FOXP1) and His-
tone deacetylase 1 (HDAC1), MRX34 dose 50 (n = 4),
p = 0.0005, 70 (n = 16), p = 0.0311, 93 (n = 16), p =
0.0299, 110 mg·m− 2 (n = 9), not significant)). As for the
clinical disease status, MRX treatment stabilised the dis-
ease in 16 patients (24%) for 19 weeks as median (range,
11–55 weeks), but partial response confirmed in three
patients (4%) and progressive disease in 31 patients
(47%). Further study in terms of efficient dose and regi-
men is needed.

miRNAs and their changes during perioperative period
It is widely known that many perioperative medications
affected miRNA expressions [101] including and anti-
coagulants. Celecoxib, one of commonly used NSAIDs
(non-steroidal anti-inflammatory drugs), has been re-
ported to inhibit cancer cell proliferation, migration, and
invasion in osteosarcoma cells via miR-34a [102], and
the expressions of miR-126-5p, −320a and -146a-5p
were correlated with the sensitivity to celecoxib [103].
Aspirin regulated miR-155/eNOS (endothelial nitric
oxide synthase) pathway and suppressed endothelial cell
dysfunction under the inflammation [104]. Also, aspirin
suppressed the expression of miR-24, − 191 and − 197 in
plasma [105].
Surgical stress, inflammation in mucosa, epithelial and

immune alteration all can be modulated by miRNA
changes after anaesthesia. miR-223 was considered as a
key miRNA among the anti-inflammation mechanism,
which regulated the intestine macrophage differentiation
and function [106]. The miR-223 upregulation was re-
ported in the condition of the intestinal inflammation
[107]. In addition, the upregulation of miR-223 was doc-
umented in acute respiratory distress syndrome/acute
lung injury (ARDS/ALI) patients [108]. The miR-223
shuttling by pulmonary neutrophils to alveolar epithelial
cells may be a novel therapy against ARDS [109]. Thus,
if cancer patient develops ARDS after surgery, mRNA,
inflammation, and immune cell changes all interacted
together make patient’s conditions more complex.
Some miRNA changes can modulate the patient’s

immune cell phenotype/balance changes. It has been
reported that regulatory T cell immune activities were
regulated by miR-125a [110], and the inflammatory T
cell immunity were controlled by miR-146a expression
[111]. In the lung cancer, miR-301a dysfunction led
CD8+ T cell infiltration into the tumour microenviron-
ment with the anti-tumor immune activation [112]. Also

miR-582 regulated CD1B expression and dendritic cell
function in the advanced lung adenocarcinoma [113],
and miR-341 was reported to be related to leukocyte
function [114] and immune escape [115].
Furthermore, some miRNAs have been found as

potential biomarkers for perioperative organ injury
including postoperative cognitive dysfunction (POCD),
acute cardiac ischemia, deep venous thrombosis (DVT)
and acute kidney injury (AKI) [116]. The mice model of
POCD showed that miR-146a [117] or -181b-5p [118]
inhibited the hippocampi inflammation and POCD de-
velopment. The increased miR-122 expression in serum
was found in the ischemic postconditioning [119],
whereas the upregulation of miR339-5p and − 483-3p,
and the downregulation of miR-139-5p in blood were
documented in acute cardiac ischemia [120]. Also, the
miR-1, −133a and − 499 expressions were correlated
positively with pro-BNP (brain natriuretic peptide) and
negatively with left ventricular ejection fraction [121].
miR-100 expression in plasma was related with the
coronary plaque vulnerability [122]. It showed that the
upregulation of miR-495 in plasma was related to a
lower DVT possibility in a rat model [123]. In addition,
miR-21 may be a biomarker of severe AKI after cardiac
surgery [124, 125]. In an in vitro model, miR-146 aug-
mented AKI via interleukin-8/CXCL (chemokine (C-X-
C motif) ligand) signaling in the tubular cells [126].

Anesthetics and miRNAs
It is known that anesthetic itself can change gene
expressions. Microarray analysis in various organs
showed that inhalational anesthetics affect 1.5% gene
expression of 10,000 genes [127]. Sevoflurane was
reported to change the expression of the circadian genes
[128] and the genes encoding drug metabolizing
enzymes [129]. However, molecular biological research
utilizing proteomics did not identify an association of
anesthetics induced gene and protein expression changes
[130]. Some miRNA profiling studies showed that both
sevoflurane and propofol affect miRNA expressions in
liver [131], lung [132], and brain [133], all of which has
its specific pattern of expression after each anesthetic ex-
posure [131, 132]. Out of 177 expressed miRNAs in
mice liver, 46 miRNA expressions were changed after
sevoflurane or propofol exposure [131]. Especially, there
was significant difference in the expression of miR-142-
3p, miR-29a and miR-378 after sevoflurane and propofol
exposure [131]. In mice lung, 20 miRNA expressions
were significantly altered after sevoflurane exposure
when compared to the controls and 16 miRNA expres-
sions were changed after 4% sevoflurane exposure with
specific expression patterns [132]. Also, 14 miRNAs
were significantly different after sevoflurane and propo-
fol exposure in mice hippocampi [133]. Hence, different
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anesthetics that induce unique changes in miRNA
expression patterns in organs may have specific effects.
Therefore, post-transcriptional factors such as miRNAs
that may control the regulation of gene expression are
expected to play a crucial role in the biological effects of
anesthetics.
Previous reports revealed that inhalational and intra-

venous anesthesia affect disease outcomes via miRNAs.
Sevoflurane exerts hepato-protective effects by inducing
miR-9-5p expression in ischaemia-reperfusion injury.
miR-9-5p targets nuclear factor-kappa B (NF-κB) 3, cod-
ing for p65, which is a key protein in the NF-κB signal-
ing pathway. Sevoflurane inhibits the NF-κB signaling
pathway and protects the liver from ischaemia-
reperfusion injury by increasing miR-9-5p expression
[134]. Sevoflurane also ameliorates systemic inflamma-
tion in acute lung injury model through miR-155 down-
regulation [135]. Propofol inhibits lipopolysaccharide-
induced neuroinflammation partly by decreasing tumor
necrosis factor-α, interleukin-6, and nitric oxide by miR-
155 suppression [136]. Propofol may also have a thera-
peutic effect in suppressing sepsis-induced renal injury
by activating miR-290-5p and the subsequent inhibition
of C-C motif chemokine ligand 2 and its downstream
pathways [137].

Anesthetics, miRNAs and immune function
Several research revealed that both anesthesia and
miRNA varied the immune response in vitro and
in vivo. Natural killer (NK) cells are an early cellular
defense in the immune system against cancer, which
is regulated by miR-181. miR-181 promotes the differ-
entiation of NK cells by targeting Nemo-like kinase
and also suppresses the upstream of interferon trans-
lation during NK cell activation [138]. Inhalational
anesthetics can suppress NK cell activity [139–141],
recruitment of macrophages [142] and dendritic cells
[143], and cause helper T (Th) polarization from an
anti-tumor phenotype (Th1) to a cancer-promoting
phenotype (Th2) [144]. In contrast, propofol can in-
crease cytotoxic T lymphocyte (anti-tumor) activity
[145], and also exhibits anti-inflammatory and anti-
oxidative properties through inhibiting
cyclooxygenase-2 and prostaglandin E2 [146]. Multiple
receptors on immune cells can be also affected by an-
esthetics in a wide range of immune function [147].
Previous in vivo studies have shown that inhalational
anesthetics reduce NK cytotoxic activity in peripheral
blood [139], the number of peripheral leukocytes
[142], and alveolar macrophages [148]. However, some
clinical studies showed that the choice of sevoflurane
or propofol did not show significant difference in cir-
culating percentage of NK cell [149], cytotoxic T lym-
phocytes [149], regulatory T cells (Treg) [150], and

Th1/Th17 ratio in breast cancer surgery [150].
Although miRNAs can cause the differentiation of im-
mune cells and indirectly modulate anti-cancer im-
munity, how anesthetics affect miRNAs and then
indirectly change anti-cancer immune function remain
unknown.

Anesthetics, cancers and miRNAs
Inhalational anesthetics increase the expression of
cellular mediators that promote proliferation and mi-
gration of cancer cells [151–153]. Sevoflurane pro-
motes the proliferation of glioma stem cells and may
increase postsurgical recurrence by upregulation of
hypoxia-inducible factor-1α (HIF-1α) and vascular
endothelial growth factor [154]. The increased HIF-
1α correlates with cancer progression and could
serve as a potential therapeutic target in cancer pa-
tients [155]. However, sevoflurane may also suppress
malignant progression in some cancer cell types
through a decreased release of matrix
metalloproteinase-2 (MMP-2) and MMP-9, partly
due to inactivation of the p38 mitogen-activated pro-
tein kinase signaling pathway in lung adenocarcin-
oma cells, resulting in anti-invasion and anti-
migration effects [156]. Propofol was reported to
have anti-cancer effects in several tumor cells with
increasing apoptosis and reducing cell proliferation
[157–159]. Propofol also reduces the level of MMP
by inhibiting NF-κB pathways, migration, and inva-
sion in breast cancer [160].
Suppressing breast cancer cell proliferation by arrest-

ing the cell cycle at the G1 phase was documented via
upregulated miR-203 by sevoflurane [161] (Fig. 2a). In
colorectal cancer cell, sevoflurane inhibits cancer inva-
sion and migration by downregulation of ERK (extracel-
lular signal-regulated kinases) pathway and MMP-9 via
miR-203 upregulation [162]. The inhibitory effects of
sevoflurane on glioma cell migration and invasion are
mediated by the upregulation of miR-637, which was
due to the suppression of Akt (protein kinase B) expres-
sion and activity [163]. Isoflurane enhances the cancer
malignancy with miR-21 upregulation with the increase
of glycolysis product and the related enzymes through
Akt phosphorylation [164].
During tumor development, MMPs digest various

extracellular matrix components, including proteogly-
cans, collagen and fibronectin, and provide a favourable
environment for primary tumorigenesis. MMPs induce
tumor cell migration by removing sites of adhesion, ex-
posing new sites for tumor growth, and releasing pro-
cancer factors from the extracellular matrix. Propofol in-
hibits cell proliferation and MMP-2 expression, and in-
duces apoptosis by miR-218 upregulation in gastric
cancer [165] and miR-451 upregulation in glioblastoma
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cell line [166] (Fig. 2b). Propofol was also reported to
decrease hepatocellular carcinoma invasiveness partly
due to MMP-9 suppression by miR-199a upregulation
[167] and inhibit osteosarcoma cell proliferation through
affecting miR-143 expression, which regulates MMP-13
protein expression [159].

miRNAs as cell-to-cell communication factors induced by
anesthetics
Cell-to-cell communication is critical for regulating bio-
logical functions (Fig. 3). The communication occurs
directly by cell-to-cell contact, e.g., via cell surface lig-
and–receptor interactions and gap junctions, and also

Fig. 2 Anesthetic affect pro- and anti-cancer miRNA expressions leading to cancer biology changes. a. Inhalational anesthetic reagents modulate
miRNA expressions. Isoflurane exposure to ovarian cancer cells increases glycolysis via PI3K/Akt pathway and HIF-1α by miR-21 upregulation, one
of oncogenes. Sevoflurane inhibits cancer cell proliferation via PI3K/Akt pathway with miR-203 upregulation in breast cancer cells. In CRC,
sevoflurane reduces cancer invasion and migration via the suppression of ERK pathway and MMP-9 by miR-203 upregulation. For glioma cells,
sevoflurane increases miR-637 expressions resulting in the decrease of cancer migration and invasion via Akt pathway inhibition. b. Propofol
exposure alters anti-cancer miRNAs. Propofol upregulates miR-143 in osteosarcoma cells, decreasing cancer cell proliferation by MMP-13 inhibition
via PI3K/Akt pathway. In gastric cancer cells, propofol exposure induces apoptosis via PI3K/Akt pathway and MMP-2 by miR-218 upregulation
whereas propofol causes apoptosis by miR-451 in glioblastoma cells. For hepatocellular carcinoma, propofol decreases MMP-9 expression by PI3K/
Akt pathway suppression via miR-199a upregulation. Ov: ovarian cancer cell, BC: breast cancer cell, G: glioma, CRC: colorectal cancer, OS:
osteosarcoma, GC: gastric cancer, GB: glioblastoma, HCC: hepatocellular carcinoma, PI3K/Akt: Phosphatidylinositol 3-kinase/protein kinase B, ERK1/
2: extracellular signal-regulated kinases 1 and 2, HIF-1α: hypoxia-inducible factors 1α, NF-κB: nuclear factor-κB, VEGF: vascular endothelial growth
factor, MMP: matrix metallopeptidases
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indirectly through secretion of mediators such as
cytokines and hormones [168]. Extracellular vesicles
(EVs) are important indirect cell-to-cell communication
carriers. Circulating EVs are found in body fluids such
as saliva, blood, serum, and urine, and all are in enriched
with mRNAs and miRNAs. Propofol may, at least in
part, have anti-cancer effects via miRNA-mediated cell-
to-cell communication [169]. Propofol-regulated miR-
NAs inhibit cellular signaling pathways via their down-
stream effectors that are involved in cell proliferation,
migration, and epithelial-mesenchymal transition of
tumor cells. In this way, propofol can induce apoptosis
of colorectal cancer cells. However, no clinical evidence
indicates that miRNAs in circulating EVs can affect
cancer recurrence and hence long-term outcomes and
further studies are needed.

Clinical relevance
Both inhalational and intravenous anesthetics are widely
used for cancer surgery. Inhalational anesthetics are in-
creasingly associated with worse cancer outcomes com-
pared to intravenous anesthetics used during cancer
surgery. Some retrospective clinical data showed that
propofol-based total intravenous anesthesia (TIVA) pro-
vides better outcomes in breast, colon, rectal, gastric,
and oesophageal cancers [170–173]. Conversely, Kim
et al. reported that recurrence and overall survival
following TIVA for breast cancer surgery are not signifi-
cantly different compared to surgery under inhalational

anesthesia [174]. Inhalational anesthesia might be com-
parable to TIVA with regard to overall survival in
patients with various cancers [175, 176]. A large retro-
spective study indicated no significant relation to
anesthetic type and recurrence free survival (hazard ratio
(HR), 0.96; 95% CI, 0.69–1.33, p = 0.782) nor overall sur-
vival among breast cancer patients with propensity
matching (any inhalational anesthetics vs propofol-based
TIVA, n = 1766 each, HR, 0.96; 95% CI, 0.69–1.33, p =
0.805) [176]. A study among high-grade glioma patients
showed that sevoflurane did not change progression-free
survival, but worsen the mortality (the risk of death after
sevoflurane use during surgery, HR, 1.66; 95% CI, 1.08–
2.57; P = 0.022) and overall survival among patients with
reduced performance status (median of overall survival,
sevoflurane, n = 154 vs propofol, n = 140, 15 months vs
11 months; P = 0.017). Another study showed that
propofol-based TIVA or any inhalational anesthetics had
no effects on cancer recurrence nor mortality in non-
small lung cell carcinoma patients with the matching
performance status (any inhalational anesthetics vs
propofol-based TIVA, n = 181 each, cancer recurrence,
HR 1.310; 95% CI, 0.841–2.041; p = 0.233, mortality, HR
0.902; 95% CI, 0.643–1.265; p = 0.551) [175]. Further-
more, the consensus statement derived from the BJA
Workshop on Cancer and Anesthesia stated that there is
insufficient evidence to support any change in current
clinical practice [177], and which anesthetic techniques
are suitable for cancer surgeries remains unclear. In

Fig. 3 The anesthetic effects on cancer cell biology, anti-cancer immunity, and cell-to-cell communication via miRNAs. Anesthetic exposure
during cancer surgery can affect normal cells, anti-cancer immune cells and cancer cells directly or indirectly via miRNA expression changes.
Mature miRNA induced by anesthesia inhibits its target protein expression in the affected cell and the adjacent cell with gap junction. Also,
miRNA with RISC is released as EV from cells by exocytosis or in microvesicles, which enable miRNA to alter the target protein expressions in the
distant cells including normal cells, anti-cancer immune cells and other cancer cells: ‘cell-to-cell communication’. miRNA: micro RNA, RISC: RNA-
induced silencing complex, EV: extracellular vesicle
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addition, at this moment, the clinical impact of miRNA
alterations on cancer outcomes is still unclear. There-
fore, the anesthetic mechanisms on cancer cell biology
are still subjected to investigate further.

Conclusion
Inhalational and intravenous anesthetics have both pro-
and anti-cancer effects through various pathways by
adjustment of miRNAs. Their effects vary depending on
the cancer cell type. Although our understanding of the
potential influence of anesthetics on cancer cell biology
has been greatly increased by laboratory investigations, a
limited number of publications of the effects of anes-
thetics on cancer cells by miRNA expression changes
have been published but the impact of those data on
clinical outcomes remains largely unknown. Further
studies are needed to integrate basic scientific findings
and clinical data related to the effects of anesthetics on
cancer cell progression, anti-cancer immunity, cell-to-
cell communication, and clinical outcomes via miRNA
modulation. Prospective clinical trials are ongoing to
investigate the effects of anesthetics on cancer recur-
rence and survival. Undoubtedly, bridging the gap be-
tween basic research findings and clinical data towards
evidence-based treatment reminds a challenge, but even
a small progress of that will have enormous potential in
improving patient outcomes. To this end, the molecular
effects including miRNAs of anesthetics on cancer cell
“behavioral” changes are needed to investigate further
and ultimately optimal anesthetic regimens can be
implemented for cancer surgery.
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dysfunction; DVT: Deep venous thrombosis; AKI: Acute kidney injury; pro-
BNP: Pro-brain natriuretic peptide; CXCL: Chemokine (C-X-C motif) ligand;
NK: Natural killer; NF-κB: Nuclear factor-kappa B; HIF-1α: Hypoxia-inducible
factor-1; MMP: Matrix metalloproteinase; ERK: Extracellular signal-regulated ki-
nases; Akt: Protein kinase B; EV: Extracellular vesicle; TIVA: Total intravenous
anesthesia
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