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Inhibition of adenosine A1 receptors

abolished the nutritional ketosis-evoked
delay in the onset of isoflurane-induced
anesthesia in Wistar Albino Glaxo Rijswijk
rats
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Abstract

Background: It has been demonstrated that administration of exogenous ketone supplement ketone salt (KS) and
ketone ester (KE) increased blood ketone level and delayed the onset of isoflurane-induced anesthesia in different
rodent models, such as Wistar Albino Glaxo Rijswijk (WAG/Rij) rats. The modulatory effect of adenosinergic system
may have a role in the ketone supplementation-evoked effects on isoflurane-generated anesthesia. Thus, we
investigated whether adenosine receptor antagonists can modulate the effect of exogenous ketone supplements
on the onset of akinesia induced by isoflurane.

Methods: To investigate the effect of exogenous ketone supplements on anesthetic induction we used ketone supplement
KE, KS, KEKS (1:1 mix of KE and KS), KSMCT and KEMCT (1:1 mix of KS and KE with medium chain triglyceride/MCT oil,
respectively) in WAG/Rij rats. Animals were fed with standard diet (SD), which was supplemented by oral gavage of different
ketone supplements (2.5 g/kg/day) for 1week. After 7 days, isoflurane (3%) was administered for 5min and the time until
onset of isoflurane-induced anesthesia (time until immobility; light phase of anesthesia: loss of consciousness without
movement) was measured. Changes in levels of blood β-hydroxybutyrate (βHB), blood glucose and body weight of animals
were also recorded. To investigate the putative effects of adenosine receptors on ketone supplements-evoked influence on
isoflurane-induced anesthesia we used a specific adenosine A1 receptor antagonist DPCPX (intraperitoneally/i.p. 0.2mg/kg)
and a selective adenosine A2A receptor antagonist SCH 58261 (i.p. 0.5mg/kg) alone as well as in combination with KEKS.

Results: Significant increases were demonstrated in both blood βHB levels and the number of seconds required before
isoflurane-induced anesthesia (immobility) after the final treatment by all exogenous ketone supplements. Moreover, this
effect of exogenous ketone supplements positively correlated with blood βHB levels. It was also demonstrated that DPCPX
completely abolished the effect of KEKS on isoflurane-induced anesthesia (time until immobility), but not SCH 58261.

Conclusions: These findings strengthen our previous suggestion that exogenous ketone supplements may modulate the
isoflurane-induced onset of anesthesia (immobility), likely through A1Rs.
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Background
It has been demonstrated that exogenous ketone (keto-
genic) supplements, such as ketone ester (KE), not only in-
crease the level of ketone bodies (e.g., β-hydroxybutyrate/
βHB) [1–5], but also maintain blood levels of ketone bodies
in both animals and humans [2, 3, 6]. Ketone bodies, such
as βHB, enter into the brain through blood-brain barrier
and provide fuel to brain cells [7, 8] improving cell energy
metabolism (e.g., enhance mitochondrial ATP synthesis)
[9]. Moreover, ketone supplement-induced ketosis can sup-
press neuronal excitability [7, 10, 11], modulate functions of
ion channels and neurotransmitter systems (e.g., increase
GABA and adenosine levels) [7, 12–14] and influence in-
flammatory processes (e.g., decrease the concentration and
expression of proinflammatory cytokines) [15]. It was sug-
gested that these effects of ketosis may have therapeutic po-
tential in the treatment of several central nervous system
(CNS) diseases, such as Alzheimer’s disease, Parkinson’s
disease, epilepsy and psychiatric disorders (e.g., anxiety,
schizophrenia and depression) [1, 3, 8, 16]. It was also
demonstrated that exogenous ketone supplements, such as
KE and ketone salt (KS) are relatively well-tolerated without
(or with minimal) adverse effects [1, 2, 6, 16, 17]. However,
exact mechanism(s) of action of exogenous ketone
supplement-generated ketosis on CNS diseases and other
pathophysiological and physiological processes are largely
unknown.
It was suggested that ketosis may modulate sleep and

sleep-like effects [18–22]. Indeed, it has been demon-
strated recently that nutritional ketosis (evoked by ex-
ogenous ketone supplements, such as KE) delayed the
onset of inhalational anesthetics isoflurane (1-chloro-2,2,
2-trifluoroethyl difluoromethyl ether)- induced anesthesia
(immobility) [23] (light phase of anesthesia: loss of con-
sciousness without movement, which was defined as ‘im-
mobility’) [24]. Nevertheless, mechanism of action of
ketosis-induced changes in isoflurane-evoked anesthesia
remains unknown. It was suggested that changes, for ex-
ample, in functioning of different ion channels (e.g., KATP

channels), neurotransmitter systems (e.g., GABAergic and
adenosinergic system) and mitochondria (e.g., mitochon-
drial respiration) may have a role in ketone supplement-
evoked effects on isoflurane-generated anesthesia [19, 23,
25–27]. However, it has also been demonstrated that keto-
sis (evoked by exogenous ketone supplements) [1, 2, 4, 5]
may increase adenosine level in the brain [14] and adeno-
sine may have a role not only in the sleep [28], but also
the generation of sleep-like effects [29, 30]. Therefore, in
this study, we examined the effect of ketone supplement
KE, KS and their mix (KEKS), as well as mix of KS and KE
with medium chain triglyceride (MCT) oil (KSMCT and
KEMCT, respectively) on isoflurane-induced onset of
anesthesia (latency to immobility). Animals (Wistar
Albino Glaxo Rijswijk/WAG/Rij rats) were fed with
standard diet (SD) and were gavaged with different keto-
genic supplements for 1 week (2.5 g/kg/day). After the last
supplement gavage we recorded the time until onset of
immobility (under 3% isoflurane). In the second part of
the study, the potential role of adenosine receptors in the
nutritional ketosis-evoked effects on isoflurane-induced
onset of anesthesia (immobility) was investigated. We
used a specific adenosine A1 receptor (A1R) antagonist
DPCPX (1,3-dipropyl-8-cyclopentylxanthine) (intraperito-
neally/i.p. 0.2 mg/kg) and a selective adenosine A2A
receptor (A2AR) antagonist SCH 58261 (7-(2-pheny-
lethyl)-5-amino-2-(2-furyl)-pyrazolo-[4,3-e]-1,2,4-tria-
zolo[1,5-c]pyrimidine) (i.p. 0.5 mg/kg) alone as well as in
combination with KEKS (2.5 g/kg/day, gavage).
This study is the continuation of our previous study on

genetically absence epileptic WAG/Rij rat strain (a well-
investigated model of human absence epilepsy) [31], in
which it was demonstrated that exogenous ketone supple-
ments (such as KE) delayed the onset of isoflurane-
induced anesthesia (increased the time required before
immobility) [23]. These effects may be clinically relevant
because administration of exogenous ketone supplements-
induced ketosis are more and more widely used as a meta-
bolic therapy in the treatment of different CNS diseases,
such as epilepsy or other seizure disorders [2, 8, 32–35].
Consequently, in order to implement a safe and successful
anesthesia, potential effects of ketosis on the latency to
anesthesia might need to be considered when epileptic pa-
tients are undergoing anesthetic procedures. For this rea-
son, this study was performed on WAG/Rij rats, to better
understand the ketone supplement-evoked effects on
isoflurane-generated onset of anesthesia and its mechan-
ism of action under epileptic condition.
In this study we hypothesized that adenosine receptor

inhibition may modulate the exogenous ketone
supplement-evoked delay in the latency to onset of
immobility.

Methods
Animals
Animal treatments were carried out according to the
Hungarian Act of Animal Care and Experimentation
(1998, XXVIII, section 243), European Communities
Council Directive 24 November 1986 (86/609/EEC) and
EU Directive 2010/63/EU to use and treat animals in ex-
perimental laboratories. The experimental design was
approved by the Animal Care and Experimentation
Committee of the Eötvös Loránd University (Savaria
University Centre) and National Scientific Ethical Com-
mittee on Animal Experimentation (Hungary) under li-
cense number VA/ÉBNTF02/85–8/2016.
Male WAG/Rij rats (n = 80; 6months old, 315–332 g;

breeding colony of WAG/Rij rats at Eötvös Loránd
University, Savaria University Centre, Szombathely,
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Hungary) were kept in groups of 3–4 under standard la-
boratory conditions (12:12 h light-dark cycle, light was on
from 08.00 AM to 08.00 PM; free access to food and
water; air-conditioned room at 22 ± 2 °C). Rats were fed
with standard rodent chow diet (SD), and received oral
(intragastric) gavage of either water (control) or different
ketone supplements (KE, KS, KSMCT, KEKS or KEMCT).
The animals were euthanized after the last treatment and
data collection by using isoflurane. All efforts were made
to minimize pain and suffering and to reduce the number
of animals used.

Treatment groups and detection of immobility
Both KE (1,3-butanediol – acetoacetate diester) and KS (Na+/
K+− βHB mineral salt) were developed by D’Agostino et al.
[2] (University of South Florida/USF, United States) in collab-
oration with Savind, Inc. (Urbana, IL, United States). Ketone
salt was mixed into a 50% solution (375mg/g pure βHB and
125mg/g of Na+/K+ in a 1:1 ratio). Medium chain triglyceride
(MCT) oil (pharmaceutical grade; approximately 60% caprylic
triglyceride and 40% capric triglyceride) was purchased from
Now Foods (Bloomingdale, IL, United States).
We demonstrated previously the tolerability and effective-

ness of exogenous ketone supplements KE, KS, KSMCT
(mix of KS and MCT oil in a 1:1 ratio), KEKS (mix of KE
and KS in a 1:1 ratio) and KEMCT (mix of KE and MCT oil
in a 1:1 ratio) given by intragastric gavage (ad libitum access
to normal rat chow + 2.5 g/kg body weight supplements by
gavage once/day in WAG/Rij rats) [1, 4, 32, 36]. Mix of ke-
tone supplements (KSMCT, KEKS, and KEMCT) was car-
ried out at the Eötvös Loránd University (Savaria University
Centre, HUNGARY). These types and dose of ketone sup-
plements introduced by oral gavage once per day for 7 days
effectively induced and maintained ketosis in our previous
studies [1, 32, 36] without causing side effects. Therefore, in
the first phase of this study, 2.5 g/kg/day dosage of ketone
supplements (KE, KS, KSMCT, KEKS and KEMCT) was ad-
ministered daily by gavage for 7 days. In the second phase of
the study, to investigate the putative adenosinergic mechan-
ism of action of ketone supplements on isoflurane-evoked
anesthesia (latency to immobility), we also used a specific
A1R antagonist DPCPX and a selective A2AR antagonist
SCH 58261, which drugs were dissolved in 10% dimethyl
sulfoxide (DMSO). All drugs were purchased from Sigma-
Aldrich Inc. (Hungary, Budapest). In order to minimize the
putative adverse effects of drugs and to induce antagonism
of A1Rs and A2ARs without changes in absence epileptic ac-
tivity we used previously tested and effective i.p. dose of
DPCPX and SCH 58261 (0.2mg/kg DPCPX and 0.5mg/kg
SCH 58261) alone as well as in combination with KEKS (2.5
g/kg/day, gavage) [32, 37, 38]. Moreover, it was demonstrated
previously that 10% of DMSO alone has no effect on absence
epileptic activity (spike-wave discharges, SWDs) in WAG/Rij
rats [39] and on sleep architecture in rats [40].
Oral gavage is a relatively stressful administration
method, which may affect the sensitivity of animals to
anesthetics [41]. Thus, to familiarize the animals to the
methods, the 7 days gavage treatment was preceded by
i.p. injection of 0.5 ml saline/100 g body weight and (30
min later) by water gavage for 5 days (adaptation period).
Following adaptation period, rats were randomly
assigned into 10 groups with 8 animals in each group.
All of the rats were injected i.p. by 0.5 ml saline/100 g
body weight/every day 30min before gavage. After the
i.p. injection, water (2.5 g/kg body weight/day, group 1;
SD, control group) or exogenous ketone supplements
(KE, KS, KSMCT, KEKS or KEMCT: 2.5 g/kg body
weight/day; group 2–6, respectively) were administered
by gavage for 7 days. One hour after the 7th treatments,
anesthesia was induced in an air tight anesthesia cham-
ber with isoflurane (3% isoflurane gas mixed with air for
5 min). Time from chamber closure until immobility
(loss of consciousness without movement) was measured
and analyzed by a blinded observer similar to previously
[23]. To test the putative effect of DPCPX and SCH
58261 alone on isoflurane-induced anesthesia (latency to
immobility), animals were i.p. injected and gavaged simi-
lar to group 1, but on the 7th treatment (water gavage)
day, i.p. injections contained 0.2 mg/kg DPCPX (group
7) or 0.5 mg/kg SCH 58261 (group 8) in 0.5 ml 10%
DMSO solution/100 g body weight. Based on results on
group 2–6, the most effective ketone supplement (KEKS)
was chosen for investigation of the putative mechanism
of action. Therefore, animals (group 9 and group 10)
were i.p. injected by saline and gavaged for 7 days by
KEKS similar to described above, but on the 7th treat-
ment (KEKS gavage) day, the i.p. injections contained
0.2 mg/kg DPCPX (group 9) or 0.5 mg/kg SCH 58261
(group 10) in 0.5 ml 10% DMSO solution/100 g body
weight. After administration of i.p. DPCPX (group 7)
and SCH 58261 (group 8) alone as well as combined ad-
ministration of KEKS with i.p. DPCPX (group 9) or SCH
58261 (group 10), anesthesia was induced and immobil-
ity was measured similar to group 1–6 on the 7th treat-
ment days.
Each rat was used only in one of the treatment groups

and was euthanized with isoflurane after the 7th treat-
ment and data collection.

Measurement of blood βHB and glucose levels as well as
body weight
Blood was taken from the tail vein of rats. βHB levels
were measured by a commercially available glucose and
ketone monitoring system (Precision Xtra™, Abbott La-
boratories, Abbott Park, IL, USA) [1, 23, 32]. Total blood
ketone levels (D-βHB + L-βHB + acetoacetate + acetone)
would be higher than we measured because this instru-
ment only measures blood levels of D-βHB. Baseline



Fig. 1 Ketone supplements-evoked changes in blood βHB and
glucose levels as well as body weight. Blood βHB levels were
significantly elevated in all groups (group 2–6) gavaged by ketone
supplements (KE, KS, KSMCT, KEKS and KEMCT) for 7 days, compared
to both control (standard diet/SD, gavaged with water for 7 days)
and to their baseline (a). After different treatments, glucose level (b)
and body weight (c) of animals did not change compared to both
control (SD) and to their baseline. Abbreviations: After, after the
treatments; Before, before the treatments; KE, ketone ester; KEKS, mix
of KE and KS in a 1:1 ratio; KEMCT, mix of KE and medium chain
triglyceride (MCT) oil in a 1:1 ratio; KS, ketone salt; KSMCT, mix of KS
and MCT oil in a 1:1 ratio; SD, standard diet/control; **p < 0.01;
***p < 0.001; ****p < 0.0001
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βHB and glucose levels were measured on the last (5th)
day of the adaptation period (group 1–6). Levels of βHB
and glucose were measured again after the last (7th) day
of water (group 1, control) and ketone supplementation
(gavage; group 2–6) on awake animals, approximately
10 min after the detection of isoflurane-induced
anesthesia (immobility) [23].
Body weight of rats were measured before (on last/5th

day of the adaptation period) and after (on last/7th day
of gavage) the treatments (group 1–6).

Statistics
All data were presented as the mean ± standard error of the
mean (S.E.M.). We compared the latency of isoflurane-
induced anesthesia (immobility) in control group (SD; group
1; gavaged by water for 7 days) and treated groups (gavaged
by different exogenous ketone supplements for 7 days: group
2–6; i.p. injected by DPCPX or SCH 58261 alone on 7th
treatment days: group 7, and group 8; administration of
KEKS in combination with i.p. DPCPX or SCH 58261 on
7th treatment days: group 9, and group 10). Moreover, base-
line (last/5th day of the adaptation period; group 1–6), con-
trol (SD; group 1; 7th day) and ketone supplements-induced
(group 2–6; 7th day) blood glucose and βHB levels as well as
body weight (before treatment and after treatment: group 1–
6) were also compared. Data analysis was performed using
GraphPad Prism version 6.0a using a two-way ANOVA with
Tukey’s multiple comparisons test. Pearson correlation was
calculated for blood βHB and anesthesia latency as individual
data points and as group means [23]. Results were consid-
ered significant when p < 0.05.

Results
Effects of exogenous ketone supplements on blood βHB
and glucose levels and body weight
A significant increase in blood βHB levels was demon-
strated after the final (7th) treatment by all exogenous ke-
tone supplements (KE, KS, KSMCT, KEKS and KEMCT;
group 2–6), compared to both control (SD; p < 0.01 for
KS; p < 0.001 for KSMCT; p < 0.0001 for KE, KEKS and
KEMCT) and baseline (p < 0.001 for KS; p < 0.0001 for
KE, KSMCT, KEKS and KEMCT) levels (Fig. 1a; Table 1).
After the 7th treatment day, changes in glucose levels

and body weight of animals were not detected (Fig. 1b
and c; Table 1 and Table 2).

Effect of exogenous ketone supplements on isoflurane-
induced anesthesia: delay in the latency to onset of
immobility
Treatments by all exogenous ketone supplements (KE,
KS, KSMCT, KEKS and KEMCT; group 2–6) caused a
significant increase in the number of seconds required
before anesthetic induction (the time until immobility),
compared to control (SD; p < 0.05 for KSMCT; p < 0.001
for KS; p < 0.0001 for KE, KEKS and KEMCT) (Fig. 2a;
Table 3) on the 7th day of treatment.
Exogenous ketone supplement-induced delay in

isoflurane-generated anesthesia (increase in latency to
immobility) positively correlated with blood βHB levels
when individual data points (R2 = 0.2933) or the group



Table 1 Effect of ketone supplements on blood βHB and glucose levels on the 7th day of gavage

Blood βHB level

Treatments
(2.5 g/kg/day; Fig. 1a)

Baseline 7th treatment day

mmol/l
(mean ± S.E.M.)

mmol/l
(mean ± S.E.M.)

Compared to baseline
(significance level/q-value)

Compared to control
(significance level/q-value)

SD (control; group 1) 0.80 ± 0.037 0.86 ± 0.018 −/0.945 –

KE (group 2) 0.79 ± 0.029 1.76 ± 0.087 ****/14.550 ****/13.610

KS (group 3) 0.83 ± 0.031 1.25 ± 0.033 ***/6.805 **/5.860

KSMCT (group 4) 0.81 ± 0.023 1.33 ± 0.049 ****/7.939 ***/6.994

KEKS (group 5) 0.83 ± 0.041 1.55 ± 0.073 ****/11.340 ****/10.400

KEMCT (group 6) 0.80 ± 0.033 2.14 ± 0.172 ****/20.230 ****/19.280

Blood glucose level

Treatments
(2.5 g/kg/day; Fig. 1b)

Baseline 7th treatment day

mg/dl
(mean ± S.E.M.)

mg/dl
(mean ± S.E.M.)

Compared to baseline
(significance level/q-value)

Compared to control
(significance level/q-value)

SD (control; group 1) 89.00 ± 1.937 95.38 ± 2.672 −/1.764 –

KE (group 2) 91.50 ± 2.284 97.63 ± 4.342 −/2.386 −/0.623

KS (group 3) 88.38 ± 1.772 100.13 ± 5.482 −/3.078 −/1.314

KSMCT (group 4) 83.63 ± 3.600 97.00 ± 5.745 −/2.213 −/0.449

KEKS (group 5) 86.38 ± 2.398 92.13 ± 3.388 −/0.865 −/0.899

KEMCT (group 6) 85.00 ± 2.659 80.88 ± 4.286 −/2.248 −/4.011

Abbreviations: KE, ketone ester; KEKS, mix of KE and KS in a 1:1 ratio; KEMCT, mix of KE and medium chain triglyceride (MCT) oil in a 1:1 ratio; KS, ketone salt;
KSMCT, mix of KS and MCT oil in a 1:1 ratio; SD, standard diet/control; **p < 0.01; ***p < 0.001; ****p < 0.0001
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means were considered (R2 = 0.5553) (Fig. 2b and c,
respectively).

Effect of A1R and A2AR inhibition on KEKS-evoked
increase in latency to immobility
Administration of i.p. DPCPX (0.2 mg/kg; group 7) and
SCH 58261 (0.5 mg/kg; group 8) alone (without KEKS
administration) did not cause significant changes in the
number of seconds required before isoflurane-induced
anesthesia (latency to immobility), compared to control
(SD; Fig. 3; Table 3) on the 7th day of gavage. It was
Table 2 Effect of ketone supplements on body weight

Body weight

Treatments
(2.5 g/kg/day; Fig. 1)

Before the treatments A

Gram (mean ± S.E.M.) G

SD (control, group 1) 325.0 ± 3.134 3

KE (group 2) 331.9 ± 2.496 3

KS (group 3) 323.1 ± 2.394 3

KSMCT (group 4) 318.0 ± 5.119 3

KEKS (group 5) 316.9 ± 5.377 3

KEMCT (group 6) 321.8 ± 5.502 3

Abbreviations: KE, ketone ester; KEKS, mix of KE and KS in a 1:1 ratio; KEMCT, mix o
KSMCT, mix of KS and MCT oil in a 1:1 ratio; SD, standard diet/control
demonstrated that i.p. 0.2 mg/kg DPCPX completely
abolished the effect of KEKS on latency to immobility
(group 9) (Fig. 3), whereas i.p. 0.5 mg/kg SCH 58261
(group 10) was ineffective on the KEKS-induced effect
(Fig. 3; Table 3). After combined administration of KEKS
with SCH 58261 on the 7th day of gavage, latency to im-
mobility significantly increased, compared to control
(SD; Fig. 3; Table 3) and both the rate of this increase
and its significance level (p < 0.0001) was similar to re-
sults, which were recorded after gavage of KEKS alone
(group 5) (Fig. 3; Table 3).
fter the treatments

ram (mean ± S.E.M.) Compared to ‘Before the treatments’
(significance level/q-value)

31.8 ± 4.427 −/1.464

24.9 ± 2.608 −/0.027

13.5 ± 3.942 −/2.495

14.0 ± 5.719 −/2.386

06.6 ± 6.434 −/3.986

16.8 ± 5.640 −/1.790

f KE and medium chain triglyceride (MCT) oil in a 1:1 ratio; KS, ketone salt;



Fig. 2 Effect of ketone supplements on isoflurane-induced anesthesia
(latency to immobility). Gavage by exogenous ketone supplements (KE,
KS, KSMCT, KEKS and KEMCT; group 2–6) significantly increased the
latency to anesthetic induction (the time until immobility), compared
to control (SD) on the 7th day of gavage (a; the raw data was plotted
as filled black triangles to the left of the columns). There was a positive
correlation between latency to immobility and blood βHB levels when
all data point (b; R2 = 0.2933) or the group means (c; R2 = 0.5553) were
considered. Abbreviations: KE, ketone ester; KEKS, mix of KE and KS in a
1:1 ratio; KEMCT, mix of KE and medium chain triglyceride (MCT) oil in
a 1:1 ratio; KS, ketone salt; KSMCT, mix of KS and MCT oil in a 1:1 ratio;
SD, standard diet/control; *p < 0.05; ***p < 0.001; ****p < 0.0001
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Discussion
In this study we demonstrated that inhibition of A1Rs com-
pletely abolished the KEKS-evoked delay in isoflurane-
induced anesthesia (immobility) in WAG/Rij rats. Moreover,
we extended our previous results showing that not only gav-
age of KE and KS [23], but also KSMCT, KEKS and KEMCT
are able to increase both the blood level of βHB (ketosis) and
number of seconds required before induction of anesthesia
(immobility).
Although isoflurane has been used in patients for nearly

50 years [19], its mechanism of action remains largely un-
known. In spite of that both behavioral and physiological dif-
ferences in functioning of sleep and general anesthetics-
induced sleep-like state were demonstrated (e.g., general
anesthesia is not able to appear spontaneously), it was sug-
gested that several brain areas, such as cerebral cortex and
the hypothalamic nucleus ventrolateral preoptic area may
participate in both processes [42–44]. It was hypothesized,
that anesthetics, such as isoflurane may induce anesthesia
through common endogenous arousal neural circuitry/sleep
pathways [44, 45].
Administration of exogenous ketone supplements by

gavage and subsequent metabolism [17, 46, 47] increases
levels of ketone bodies in the blood stream (nutritional
ketosis) [1, 2, 4, 32]. Ketone bodies, such as βHB may
enter into the brain through blood brain barrier and
modulate different physiological and pathophysiological
processes, such as sleep or seizures [7, 8, 12]. As ketosis
(βHB) increases adenosine level [14] in the brain tissue
and adenosine has a role in the sleep generation [28, 29],
enhanced level of βHB generated by ketone supplements
may modulate naturally occurring sleep. Indeed, exogen-
ous ketone supplement-generated ketosis may evoke a
decrease in total sleep time through ventrolateral preop-
tic area [20, 21, 44]. Moreover, it has been demonstrated
that level and metabolism of both ketone bodies [7, 18,
48], as well as adenosine and expression of adenosine re-
ceptors [49] are regionally different in the brain, which
strengthen the modulatory role of ketone bodies and ad-
enosine in processes such as sleep and sleep-like states.
Ketosis-evoked increase in extracellular adenosine levels
may change neuronal activity in different brain areas
[22, 49] implicated in sleep/sleep-like effects by its re-
ceptors. Increased level of adenosine was demonstrated
during waking whereas adenosine concentration de-
creased during sleep in the brain [50]. Adenosine ago-
nists induced sleep/electroencephalographic slow-wave
activity, but adenosine receptor antagonists (e.g., a non-
selective antagonist of adenosine receptors caffeine) re-
versed effects of adenosine on the sleep [51]. Moreover,
adenosine accumulates under, for example, sleep
deprivation and may have a role in the anesthetic action
of isoflurane [28, 44]: theophylline (a non-selective
antagonist of adenosine receptors) reversed the cerebral



Table 3 Effect of ketone supplements, DPCPX, and SCH 58261 alone as well as ketone supplement KEKS in combination with
DPCPX or SCH 58261 on latency to immobility on the 7th day of gavage

Latency to immobility

Treatments (2.5 g/kg/day; Figs. 2a and 3) Sec (mean ± S.E.M.) Compared to control (significance level/q-value)

SD (control, group 1) 142.88 ± 2.474 –

KE (group 2) 173.50 ± 3.105 ****/10.220

KS (group 3) 162.50 ± 1.679 ***/6.548

KSMCT (group 4) 157.88 ± 3.446 */5.005

KEKS (group 5) 183.88 ± 4.299 ****/13.680

KEMCT (group 6) 171.75 ± 2.226 ****/9.634

DPCPX (group 7) 146.25 ± 4.443 −/0.765

SCH 58261 (group 8) 141.63 ± 4.935 −/0.283

KEKS + DPCPX (group 9) 138.13 ± 4.202 −/1.177

KEKS + SCH 58261 (group 10) 187.13 ± 5.531 ****/12.290

Abbreviations: DPCPX (DP), 1,3-dipropyl-8-cyclopentylxanthine (a specific adenosine A1 receptor/A1R antagonist); KE, ketone ester; KEKS, mix of KE and KS in a 1:1
ratio; KEMCT, mix of KE and medium chain triglyceride (MCT) oil in a 1:1 ratio; KS, ketone salt; KSMCT, mix of KS and MCT oil in a 1:1 ratio; SCH (SC), SCH 58261, 7-
(2-phenylethyl)-5-amino-2-(2-furyl)-pyrazolo-[4,3-e]-1,2,4-triazolo[1,5-c] pyrimidine (a selective adenosine A2A receptor/A2AR antagonist); SD, standard diet/control;
*p < 0.05; ***p < 0.001; ****p < 0.0001
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effects of isoflurane in dogs (e.g., EEG has been changed
from a sleep pattern to an awake pattern) [30] and caf-
feine accelerated emergence from isoflurane-evoked
anesthesia in humans [52]. Moreover, enhanced activity
of A1Rs (e.g., by an A1R agonist N-sulfophenyl adeno-
sine) may cause increase in anesthesia recovery time [53]
Fig. 3 Influence of A1R antagonist DPCPX and A2AR antagonist SCH
58261 on KEKS-generated changes in isoflurane-evoked anesthesia
(latency to immobility). Administration of DPCPX (i.p. 0.2 mg/kg;
SD + DP; group 7) and SCH 58261 (i.p. 0.5 mg/kg; SD + SC; group 8)
alone did not modulate the latency to immobility, compared to
control (SD; the raw data was plotted as filled black triangles to the
left of the columns). Combined administration of DPCPX (i.p. 0.2 mg/
kg) with KEKS (K + DP; group 9) completely abolished the effect of
KEKS on latency to immobility, whereas SCH 58261 (i.p. 0.5 mg/kg)
was ineffective on the KEKS-induced influence (K + SC; group 10);
Abbreviations: DP (DPCPX), 1,3-dipropyl-8-cyclopentylxanthine (a
specific adenosine A1 receptor/A1R antagonist); KEKS, mix of KE and
KS in a 1:1 ratio; SC (SCH 58261), 7-(2-phenylethyl)-5-amino-2-(2-furyl)-
pyrazolo-[4,3-e]-1,2,4-triazolo[1,5-c] pyrimidine (a selective adenosine A2A
receptor/A2AR antagonist); SD, standard diet/control; ****p<0.0001
and isoflurane may activate A1Rs [54]. It has been dem-
onstrated that receptors of adenosine, such as inhibitory
A1Rs and excitatory A2ARs are expressed brain areas
implicated in the generation of sleep and sleep-like ef-
fects, such as ventrolateral/lateral preoptic area and basal
forebrain [29]. Thus, adenosine may be a link between
the anesthetic actions of isoflurane and sleep regulation
as an endogenous sleep factor.
It was also demonstrated that inhibition or disinhib-

ition by A1Rs (e.g., in wake-promoting neurons of basal
forebrain or sleep-active neurons of ventrolateral preop-
tic area, respectively) may induce sleep [29, 55, 56].
Nevertheless, A1Rs may also promote wakefulness by in-
hibition of sleep-active neurons in lateral preoptic area
[57] and in ventrolateral preoptic area [58]. Conse-
quently, we can hypothesize that adenosinergic system
may modulate the influence of exogenous ketone sup-
plements, such as KEKS, on the onset of isoflurane-
induced anesthesia (immobility) by inhibition of sleep
active neurons (possibly by ketosis and, as a conse-
quence, through increase in adenosine level as well as its
A1Rs) [14, 23], which processes lead to delay in the
anesthetic effects of isoflurane. Indeed, although the
A1R antagonist DPCPX alone did not change the
isoflurane-generated anesthetic effect (immobility),
combined administration of DPCPX with KEKS com-
pletely abolished the KEKS-evoked increase in latency to
immobility under isoflurane anesthesia (Fig. 3). More-
over, adenosine receptors may also modulate anesthesia
recovery time [52, 53]. Thus, it is possible that exogen-
ous ketone supplements not only delay the onset of
isoflurane-induced anesthesia (immobility) [23] (Fig. 2a
and 3), but also modulate the time required for recovery
from anesthesia. However, further studies are needed to
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determine the exact effect and mechanism(s) of action of
exogenous ketone supplements (ketosis) on isoflurane-
generated anesthetic effects.
As it was demonstrated, not only A1Rs but also A2ARs

are implicated in sleep generation, and A2ARs are consid-
ered more important in sleep regulation [29]: increased
activity of A2ARs, for example, in ventrolateral/lateral pre-
optic area may induce sleep through sleep-active/promot-
ing neurons [57, 59]. It has been demonstrated that A1Rs
are abundantly expressed in the brain whereas A2AR ex-
pression is week in most of brain areas such as ventrolat-
eral preoptic area [29, 49, 60]. Thus, as it was
demonstrated, effects of adenosine on both sleep [29, 55–
58] and processes of anesthesia may be brain region- and
receptor-dependent. In addition, our knowledge relating
to the exact role of adenosinergic system in modulation of
both isoflurane-evoked anesthesia and connections be-
tween brain areas implicated in processes of anesthesia is
far from complete. Consequently, it is possible that A1Rs
are predominant whereas A2ARs are secondary (if any) in
adenosine-evoked influences on anesthesia at least at this
level of isoflurane-generated anesthesia (loss of conscious-
ness without movement: immobility) in WAG/Rij rats. In-
deed, our results suggest that A2ARs have no effect on
isoflurane-generated anesthesia (immobility): neither
isoflurane-induced anesthesia (latency to immobility) nor
the effect of exogenous ketone supplement KEKS on
isoflurane-induced anesthesia (latency to immobility) were
modulated by the A2AR antagonist SCH 58261 (Fig. 3).
Nevertheless, it cannot be excluded that this physiologic-
ally effective dose of A2AR antagonist SCH 58261 (0.5
mg/kg) may not have been adequate to investigate its in-
fluence on isoflurane-generated light phase of anesthesia
(loss of consciousness without movement, immobility),
but may modulate the later/deeper phase(s) of isoflurane-
evoked anesthesia. However, more studies are needed to
explain the exact role of adenosine and its receptors in
isoflurane-induced anesthesia.
It has been demonstrated that gavage of exogenous ke-

tone supplements, such as KSMCT for 7 days not only
increases the number of seconds required before
isoflurane-induced anesthetic induction (the time until
immobility) (Fig. 2a) [23], but also generates decrease in
both anxiety level on elevated plus maze [36] and ab-
sence epileptic activity [32] in WAG/Rij rats. These ef-
fects may be in correlation with enhanced level of βHB
[23, 32, 36] (Fig. 2b and c). Moreover, it was showed that
inhibition of A1Rs may abolish the anti-anesthetic (Fig.
3), antiepileptic [32] and anxiolytic [36] effects of ex-
ogenous ketone supplements, suggesting that adenosi-
nergic system may modulate the ketone supplements
(ketosis) induced influences in the CNS. Indeed, it was
proposed that adenosinergic system (e.g., through A1Rs)
has a role in the modulation of sleep and sleep-like
effects [28–30], different types of epilepsies [61–63] and
anxiety [64–66]. However, new studies are needed to re-
veal the likely (at least partly) common mechanism(s), as
well as interactions of adenosine receptors and adeno-
sine receptor-evoked changes (e.g., in ion channels, sig-
nal transduction, metabolic processes) in different brain
areas involved in sleep/sleep-like effects, epilepsy and
anxiety, by which ketone supplements could exert its
above mentioned influences.
One limitation of our study is that we used the WAG/Rij

rat strain exclusively to investigate the effect of ketone sup-
plementation on isoflurane-induced anesthesia. In addition,
during this study we narrowed our focus on the influence of
ketone supplement-evoked effects to the adenosinergic sys-
tem. Nevertheless, this WAG/Rij rat strain is extensively used
for investigation of different drugs on CNS diseases [1, 67–
71], and the present study further supports our previous ex-
periments [23] on the role of the adenosinergic system. It
has been suggested that the ketosis/βHB-evoked increase in
adenosine levels [14] can modulate influence of ketone sup-
plements not only on different CNS diseases [8, 32, 36], but
also sleep and sleep-like effects [20, 21, 28–30] via adenosi-
nergic system (likely through A1Rs). Consequently, we
propose that the adenosinergic system may be one of main
neurotransmitter systems by which ketone supplements can
exert their influence on isoflurane-induced anesthesia. How-
ever, to get comprehensive view on influence of ketone sup-
plements on isoflurane-evoked anesthesia more studies are
needed on other animal strains and humans, on changes not
only in adenosinergic, but also other neuromodulatory/
neurotransmitter systems (such as cholinergic, dopaminergic,
and GABAergic system), and on other phases of anesthesia/
emergence from anesthesia [24, 53, 72] by administration of
different/higher doses and types of ketone supplements. Fur-
ther studies are also needed to reveal exact effects of different
doses of drugs were used, such as DPCPX and SCH 58261,
on isoflurane-generated anesthesia by administration of dis-
tinct methods (e.g., not only i.p., but also microinjections/mi-
crodialysis to specific brain areas, such as basal forebrain, as
well as intravenous administration) [57, 58, 73].

Conclusion
The present study strengthened the putative clinical and sur-
gical relevance of ketone supplements-evoked influences on
sleep and sleep-like effects suggested by our previous results:
exogenous ketone supplements may increase the resistance to
the isoflurane-induced anesthetic influence by delaying the
onset of anesthesia (immobility). Thus, monitoring of blood
ketone levels in humans undergoing isoflurane and (theoretic-
ally) other inhalational anesthesia may be important and help-
ful for the anesthesiologists. Moreover, inhibitory effect of
DPCPX on KEKS-evoked delay in isoflurane-generated
anesthesia (immobility) suggests that the adenosinergic
system, likely via A1Rs, may modulate the exogenous ketone
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supplements-evoked anti-anesthetic influence. However, fur-
ther studies are needed to reveal the exact mechanism(s) of
action of exogenous ketone supplements (ketosis) on
isoflurane-generated anesthesia not only in animals, but also
in human subjects because ketone supplements used in nor-
mal and pathological conditions may modify the time needed
for anesthesia.
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