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Abstract

Background: Pneumatic tourniquet inflation during extremity surgery leads to profound and prolonged tissue
ischemia. Its effect on tissue oxygenation is inadequately studied.

Methods: Patients undergoing elective ankle surgery with tourniquet application participated in this observational
cohort study. Somatic and cerebral tissue oxygen saturation (SstO, and SctO,) were monitored using tissue near-
infrared spectroscopy. Oxygenation was monitored distally (SstO,-distal) and proximally to the tourniquet, on the
contralateral leg, and the forehead (a total of 4 tissue beds). Tissue oxygenation at different time points

was compared. The magnitude, duration, and load (product of magnitude and duration) of tissue desaturation
during tourniquet inflation were correlated with tissue resaturation and hypersaturation after tourniquet deflation.

Results: Data of 26 patients were analyzed. The tourniquet inflation time was 120 + 31 mins. Following a rapid
desaturation from 77 + 8% pre-inflation to 38 + 20% 10 mins post-inflation, SstO,-distal slowly and continuously
desaturated and reach the nadir (16 + 11%) toward the end of inflation. After deflation, SstO,-distal rapidly
resaturated from 16+ 11% to 91 + 5% (i.e,, hypersaturation); SstO, monitored proximally to the tourniquet and on
contralateral leg had significant but small desaturation (~2-3%, p < 0.001); in contrast, SctO, remained stable. The
desaturation load had a significant correlation with resaturation magnitude (p < 0.001); while the desaturation
duration had a significant correlation with hypersaturation magnitude (p = 0.04).

Conclusions: Tissue dys-oxygenation following tourniquet application can be reliably monitored using tissue
oximetry. Its outcome significance remains to be determined.
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Background

A pneumatic tourniquet is commonly employed during
extremity surgery to reduce blood loss and facilitate the
surgeon’s operation (i.e., a bloodless surgical field). It is
intriguing when considering that, although the blood
flow is completely or near-completely stopped for a pro-
longed period, the tissue beds distal to the tourniquet
are still alive afterward. In theory, the ischemic tissue
would become hypoxic, and the hypoxia would become
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progressively worse, following the interruption of blood
flow as long as the tissue continues to consume oxygen
albeit maybe at a much slower rate as a result of the
adaptive changes or other factors such as anesthesia [1,
2]. It is enlightening if the change in tissue oxygenation
following tourniquet inflation is continuously monitored.
The modern tissue oximetry based on near-infrared
spectroscopy enables non-invasive, bedside and continu-
ous measurement of the hemoglobin oxygen saturation
of the mixed arterial, capillary, and venous blood in the
tissue bed that is ~2-2.5 cm below the probe. Cerebral
tissue oxygen saturation (SctO,) monitored on the fore-
head has been used in clinical care for 20+ years in
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patients having surgery [3] and cardiac arrest [4]; in con-
trast, the clinical application of somatic tissue oxygen
saturation (SstO,), monitored at a peripheral location, is
relatively new [5, 6]. The goal of this prospective cohort
study was to characterize the tissue dys-oxygenation re-
lated to tourniquet application during ankle surgery. The
secondary objective was to correlate parameters derived
during tourniquet inflation with parameters derived fol-
lowing tourniquet deflation to explore the potential dir-
ection for future research.

Methods

This observational analytic cohort study was approved
by the Institutional Review Board for clinical investiga-
tions at Yale University, New Haven, Connecticut, USA.
Consent to participate in the study was obtained from
all patients before surgery.

Patients and anesthesia
The inclusion criteria were: 1) elective ankle surgery for
non-diabetic-related injuries, 2) tourniquet application,
and 3) American Society of Anesthesiologists (ASA)
physical status score < III. The exclusion criteria were: 1)
patient refusal, 2) urgent or emergent surgery, 3) age <
18 years, 4) diabetic foot, 5) peripheral vascular disease,
6) skin condition unsuitable for adhesive oximetry probe,
7) pregnancy and 8) existing neuropathy or myopathy.
All patients received ultrasound-guided peripheral
nerve blockade using an insulated needle before surgery.
Patients were monitored with electrocardiogram, pulse
oximetry, and non-invasive blood-pressure, supple-
mented with 21/min oxygen by nasal cannula, and
pre-medicated with intravenous 1-2 mg midazolam and
50-100 pg fentanyl. A single-shot popliteal, sciatic, and
saphenous nerve block were performed under in-plane
technique with a total of 30 ml 0.5% ropivacaine. Upon
arriving at the operating room and following anesthesia
induction with intravenous lidocaine, fentanyl and pro-
pofol administration, either an endotracheal tube or la-
ryngeal mask airway, at the discretion of the anesthesia
team, was placed. Anesthesia was maintained using
sevoflurane. The tourniquet was placed on the upper leg
and inflated to 300 mmHg during surgery in all patients.

Tissue oxygenation monitoring

Tissue oxygenation was monitored using a tissue oxim-
eter based on near-infrared spectroscopy (NIRS)
(FORE-SIGHT Elite, CASMED, Inc., Branford, Con-
necticut). In essence, NIRS-measured tissue oxygenation
is determined by the balanced between oxygen con-
sumption and supply of the tissue bed which is about 2—
2.5 cm below the interrogating probe. In this study, four
different tissue beds were monitored in each patient: 1)
SstO, distal to the tourniquet (SstO,-distal) with the
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probe placed on the back of the lower leg and about 4
fingers below the popliteal crease; 2) SstO, proximal to
the tourniquet (SstO,-prox) with the probe placed on
the front of the upper leg and about 6 fingers below the
femoral crease; 3) SstO, on the contralateral leg (SstO,--
contra) at the same location as SstO,-distal; 4) SctO,
with the probe placed on the forehead. Monitoring and
data recording started before anesthesia induction and
stopped at the end of surgery.

Data recording and analysis

Tissue oxygenation of different tissue beds was simul-
taneously and continuously recorded into an excel work-
sheet by a research laptop at a frequency of one new
data point every 2s. The medians of tissue oxygenation
within each minute were used in the analysis. The time
points of interest were: immediately before tourniquet
inflation (Ty), 5 mins (T5), 10 mins (T1), 20 mins (Tyg),
30 mins (T3p), and 60 mins (Tgp) after tourniquet infla-
tion, immediately before tourniquet deflation (T.,q), and
3-5 min after tourniquet deflation (Tp,s). The hypoxic
load, defined as the product of the magnitude and dur-
ation of tissue desaturation, is quantified by the area
under the curve (AUC) encircled by the actual tracing
and the straight line of the baseline value (Ty).

Statistical analysis

As an exploratory observational study, a power analysis
was not performed before the study. Data are expressed
as mean + SD. Paired Student's t-test was used when
comparing the changes in tissue oxygenation of the
same tissue bed. The correlation between the variables
before tourniquet deflation (baseline oxygenation (T)),
maximal hypoxia (Te,q), hypoxic duration, and hypoxic
load (AUC)) and the variables after tourniquet deflation
(resaturation magnitude (AT ostena), resaturation rate
(%/second), and hyperemic response (ATps¢.0)) Was ana-
lyzed using Pearson’s correlation coefficient. The p value
<0.05 was considered significant. Statistical analyses
were performed using SPSS software (ver. 22.0 for Win-
dows; SPSS Inc., Chicago, IL).

Results
Thirty-one patients participated in this study. Five pa-
tients were excluded from the analysis due to incomplete
data (n =4) and conversion of ankle surgery to
below-knee amputation (# = 1). Data of 26 patients were
included in the final analysis. The patient’s demographic
data and past medical history were summarized in
Table 1. All patients had a tourniquet application, with
an average duration of 120 + 31 mins.

Tissue oxygenation of different tissue beds was sum-
marized in Table 2 and illustrated by Fig. 1. Tourni-
quet inflation led to a rapid decrease of SstO,-distal
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Table 1 Demographics, tourniquet time and co-morbidities
of the study population (n = 26)

Variables Value & count
Age (year) 48+ 15
Sex =male (n (%)) 16 (62%)
Weight (kg) 89+23
Height (cm) 173+10
BMI 30+7
ASA 21l (n (%)) 19 (73%)
Leg =right (n (%)) 22 (85%)
Hypertension (n (%)) 8 (31%)
Diabetes mellitus (n (%)) 3 (12%)
Peripheral vascular disease (n (%)) 1 (6%)
Chronic lung disease (n (%)) 6 (23%)
Cardiovascular diseases (n (%)) 1 (6%)

BMI body mass index, ASA American Society of Anesthesiologists

from 77+8% pre-inflation to 38+20% 10 mins
post-inflation (51% relative decrease). SstO,-distal
slowly, but continuously, trended downward (i.e., de-
saturation) throughout the rest of the inflation period
and did not reach the nadir (16 + 11, 79% relative de-
crease) until immediately before the tourniquet defla-
tion. Following tourniquet deflation, there was a rapid
increase (469% relative increase) of SstO,-distal from
the nadir of 16+ 11% to the peak of 91 +5% about
3-5 min post-deflation (i.e., resaturation). The difference
between the post-deflation peak value (Tp.) and the
pre-inflation baseline value (T,) of SstO,-distal was
14+8% (18% relative increase) (i.e,, hyperemia)
(Table 3).

The oxygenation of other tissue beds, including
SstO,-prox, SstO,-contra and SctO,, remained stable
throughout the ischemic period from Ty to Te,q. The
tourniquet deflation led to a relative decrease of both
SstO,-prox and SstO,-contra of 3-4% (p < 0.05); in
contrast, SctO, remained relatively stable following tour-
niquet deflation, albeit it had a small increase in the
21-year old patient illustrated in Fig. 2.
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The resaturation magnitude (ATpostena) had a signifi-
cant correlation with maximal hypoxia (Tenq)
(p < 0.001) and hypoxic load (AUC) (p < 0.001). The
resaturation rate (%/second) had a significant correlation
with maximal hypoxia (Te,q) (p =0.03). The hyperemic
response (AT,q.0) had a significant correlation with
both baseline oxygenation (Ty) (p < 0.001) and hypoxic
duration (p = 0.04).

Discussion

This study showed that extreme tissue hypoxia incurred
by tourniquet application can be reliably and continuously
measured using NIRS-based tissue oximetry. The hypoxic
load (AUC) is significantly associated with the magnitude
of the reperfusion-related resaturation (ATposeend)s but
not the rebound hyperemia (AT post0). In comparison, the
ischemic time is significantly associated with the rebound
hyperemia (ATpost0), but not the magnitude of resatura-
tion (ATpost-end)- The magnitudes, durations, and loads of
tissue hypoxia during tourniquet inflation vary among dif-
ferent patients; however, the clinical significance of these
parameters remains to be determined.

In 1904, Harvey Cushing first described the clinical
application of pneumatic tourniquet [7]. Tourniquet is
currently widely used during upper and lower extremity
surgery to facilitate the surgeon’s operation by rendering
a bloodless surgical field. It is a milestone event in med-
ical history. However, tourniquet is not risk-free. Various
post-tourniquet complications have been reported such as
nerve palsy [8], vascular injuries [9], wound hypoxia [10],
abnormal electromyography and muscle weakness [11]. If
given enough time, the tissues that are distal to the tourni-
quet will eventually die. However, the time limit of safe
tourniquet inflation during extremity surgery remains con-
troversial [12—14]. The dogma of 90 mins is based on ani-
mal studies [15, 16]. In patients undergoing knee surgery,
Gidlof et al. showed that tourniquet-induced prolonged is-
chemia (90-180 min) led to a progressively worsening
endothelial injury [17]. Many other studies showed that
tourniquet-induced extreme ischemia (>4 h) can lead to ir-
reversible skeletal muscle injury [18, 19].

Table 2 Absolute values and changes of somatic tissue oxygen saturation (SstO,) and cerebral tissue oxygen saturation (SctO,) at

different time points (n = 26)

To Tend Toost ATpoo o’ ATgoend”
SstO,-distal (%) 775+77 156 + 97 909 * 40 138+ 80" 754+ 115
SstO,-prox (%) 823 +6.1 811+78 784+ 73 36+ 45 —27+23
SstO,-contra (%) 812+ 68 813+ 100 783 + 105 -56+63 -30+32
SctO, (%) 775+62 799 +79 80.1 + 80 20£63 02+27

SstO,-distal = SstO, distal to the tourniquet; SstO,-prox = SstO, proximal to the tourniquet; SstO,-contra = SstO, on the contralateral leg; T, = immediately before
tourniquet insufflation; Teng = immediately before tourniquet deflation; T,ose = 3-5 min after tourniquet deflation

“P <0.001
“paired Student's t-test between Tyo.: and To
bpaired Student's t-test between Tpo5 and Teng
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The effect of tourniquet inflation on NIRS-measured
tissue oxygenation in humans has been previously re-
ported [20]. However, the tissue beds monitored and the
research aims in these studies are different from our
study. The study performed by Song et al. monitored
cerebral, not somatic, tissue bed in patients undergoing
total knee replacement surgery [21]. Tujjar et al. only
monitored the tissue bed that was distal to the tourni-
quet in patients undergoing upper extremity surgery
[22]. In healthy volunteers, Muellner et al. studied the
effects of different tourniquet inflation pressures on
tissue oxygenation based on the monitoring of the tis-
sue bed distal to the tourniquet only [23]. In patients
undergoing ankle fracture repair, Shadgan et al. stud-
ied the relationship between tissue oxygenation and
oxidative muscle injury based on the monitoring of
the tissue beds distal to the tourniquet and on the
contralateral leg [24].

The reactive hyperemia following tourniquet release is
a well-documented phenomenon [25]. De Backer and
Durand advocated the use of reactive hyperemia as an
indicator of the microvascular reserve [26], as corrobo-
rated by the observation that the magnitude of reactive
hyperemia is reduced in septic patients compared with
control subjects [27]. In a rat model, Kim et al. showed
that NIRS-measured tissue oxygenation had an over-
shoot (i.e., higher than baseline) following a 2-h, not 3-h
tourniquet inflation, suggesting an association between
the duration of ischemia and the magnitude of
hyperemic response [28].

The severity of tourniquet-induced ischemia is trad-
itionally gauged by the duration of tourniquet inflation.
However, this approach may have overlooked the dy-
namic nature of tissue ischemia in an individual patient
and the variability of ischemic severity among different pa-
tients, as suggested by both our study and the previous

Table 3 Association of representative variables of tissue oxygenation with variables of resaturation and hyperemia following

tourniquet deflation (n = 26)

Variable Resaturation magnitude (ATpost-end) Resaturation rate (%/second) Hyperemic response (ATposi-0)
R value P value R value P value R value P value
Baseline oxygenation (To) 0.02 092 -0.01 0.95 -0.87 < 0.001
Maximal hypoxia (Tenq) -0.94 < 0.001 043 0.03 -0.19 0.34
Hypoxic duration 0.26 0.20 -0.17 041 041 0.04
Hypoxic load (AUC) 0.66 < 0.001 -0.08 0.70 0.09 068

To =immediately before tourniquet insufflation; Teng = immediately before tourniquet deflation; Tp,os: = 3-5 min after tourniquet deflation. ATposeng = difference
between tissue oxygenation immediately before and after tourniquet deflation; AT, = difference between tissue oxygenation immediately after tourniquet

deflation and before tourniquet inflation (baseline); AUC = area under curve
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Fig. 2 Real-time tracing of somatic tissue oxygen saturation (SstO,) monitored distal (SstO,-distal) and proximal (SstO,-prox) to the tourniquet
and on the contralateral leg (SstO,-contra) and cerebral tissue oxygen saturation (SctO,) monitored on the forehead in a 21-year old
college student

studies [21-24]. Moreover, the consequence of tissue ische-
mia is determined not only by the ischemic duration, but
also the metabolic demand as suggested by the association
between slow energy consumption and delayed ultrastruc-
tural damage in the canine ischemic model [29]. Tissue ox-
imetry, which measures the balance between tissue oxygen
consumption and supply continuously and non-invasively,
is a promising technology in assessing the severity of
tourniquet-induced ischemia in individual patients.

Skeletal muscle can rapidly adjust its energy expend-
iture and production during acute ischemia [30, 31]. The
ATPs reserved in muscle fibers only last for a few sec-
onds [32]. However, the skeletal muscle can remarkably
replenish energy via two distinctive anaerobic pathways.
The pathway of anaerobic glycolysis can sustain muscle
activity for a few minutes [33]; while the pathway of
phosphocreatine degradation can sustain muscle activity
from minutes to hours [34]. As a result, the ATPs in
skeletal muscle fall at a very low rate during the first 3—
4 h of ischemia [35, 36]. However, tissue damage charac-
terized by cell necrosis and apoptosis eventually ensues
about 6-7 h after the onset of ischemia when the glyco-
gen and phosphocreatine reserves are exhausted [37].

An interesting observation of our study is the rapid
desaturation for about 10 mins followed by a slow but
continuous desaturation for the remaining ischemic
period in the tissue bed distal to tourniquet. This
phenomenon may be secondary to the adaptive adjust-
ment of metabolic activity made by primarily muscular
tissue. Although SctO, remained stable following tourni-
quet deflation based on the average of all patients, the

21-year-old physically fit college student had a not-
able increase in SctO,, a change different to most other
patients (Fig. 2). It may relate to the metabolites (includ-
ing carbon dioxide) generated by the ischemic tissue
which were flushed into cerebral circulation and led to
cerebral vasodilation following tourniquet deflation. This
21-year-old young patient may have a more robust cere-
bral vasoreactivity to carbon dioxide than older patients
(the average age of all patients = 48 years). Nonetheless,
the exact cause and the clinical significance of this out-
lier remain to be elucidated.

This study did not evaluate the complications associ-
ated tourniquet application and thus cannot tell the rela-
tionship between tissue NIRS parameters and
ischemia-related outcomes. This is a major limitation of
our study. Also, all patients in our study had a peripheral
nerve block, which makes it difficult to extrapolate the
findings of this study in patients without nerve block.
We found a considerable variation in both the rate and
magnitude of tissue desaturation following tourniquet
inflation. One of the potential causes of this inter-indi-
vidual variation may relate to the thickness of the skin
and subcutaneous tissue because thick superficial layers
may preclude the near-infrared light from interrogating
the deeper muscular tissue.

Conclusion

NIRS-based tissue oximetry can reliably and continu-
ously measure tissue desaturation, resaturation and
hypersaturation during tourniquet application. The
desaturation load is associated the magnitude of
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resaturation; while the desaturation duration is associ-
ate with the magnitude of hypersaturation. The clin-
ical value of tissue oximetry in patients receiving
tourniquet application needs to be determined by fu-
ture research.
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ATpost0' Tpost = Toi ATpost-end: Tpost = Tenai AUC: Area under the curve;
SctO,: Cerebral tissue oxygen saturation; SstO,: Somatic tissue oxygen
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tourniquet deflation; Toee: 3-5 min after tourniquet deflation
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