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Abstract

craniotomy model.

Background: Hyperosmolar solutions have been used in neurosurgery to modify brain bulk and prevent
neurological deterioration. The aim of this animal study was to compare the short-term effects of equivolemic,
equiosmolar solutions of mannitol and hypertonic saline (HTS) on cerebral cortical microcirculation in a rabbit

Methods: Rabbits (weight, 2.0-3.0 kg) were anesthetized, ventilated mechanically, and subjected to a craniotomy.
The animals were allocated randomly to receive a 3.75 ml/kg intravenous infusion of either 3.2 % HTS (group HTS,
n=238) or 20 % mannitol (group MTL, n =8). Microcirculation in the cerebral cortex was evaluated using sidestream
dark-field (SDF) imaging before and 20 min after the end of the 15-min HTS infusion. Global hemodynamic data
were recorded, and blood samples for laboratory analysis were obtained at the time of SDF image recording.

Results: No differences in the microcirculatory parameters were observed between the groups before the use of
osmotherapy. After osmotherapy, lower proportions of perfused small vessel density (P =0.0474), perfused vessel

those in the HTS group.

density (P =0.0457), and microvascular flow index (P = 0.0207) were observed in the MTL group compared with

Conclusions: Our findings suggest that an equivolemic, equiosmolar HTS solution better preserves perfusion of
cortical brain microcirculation compared to MTL in a rabbit craniotomy model.
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Background

Hyperosmolar solutions have been used during neuro-
surgical procedures to improve operating conditions and
prevent transdural herniation and neurological deterior-
ation [1-3]. Mannitol (MTL) and hypertonic saline
(HTS) have been evaluated in patients without intracra-
nial hypertension [1, 2, 4, 5] with equivocal results. A
recent meta-analysis comparing the intraoperative effects
of HTS and MTL during neurosurgical procedures [6]
demonstrated significantly increased odds of satisfactory
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intraoperative brain relaxation and intracranial pressure
control using the former agent.

Administering HTS or MTL increases serum osmolar-
ity and decreases intracranial pressure and brain water
content in non-injured brain areas, as shown in animal
studies [7, 8]. The effectiveness of a hyperosmolar solute
depends on its permeability through an intact blood—brain
barrier (BBB). The BBB is almost impermeable to HTS
(reflection coefficient [RC]=1) but more permeable to
MTL (RC =0.9) [5, 9]. Therefore, HTS may induce a more
intensive fluid shift from brain tissues into the intravascu-
lar space compared with that of MTL.

Other biochemical and physiological differences exist
between HTS and MTL. HTS acts to increase the effect-
ive circulating volume, whereas MTL decreases the
circulating volume through diuresis [6, 10, 11]. HTS
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results in improved cardiac output, improved regional
blood flow, improved cerebrospinal fluid absorption
[10], and beneficial immunomodulation [12]. HTS has
also been suggested to be superior to MTL for brain
oxygenation and cerebral hemodynamics [13]. However,
MTL may improve microvascular cerebral blood flow
[14], reduce blood viscosity [15], improve blood rheology
[16], reduce cerebrospinal fluid production [17], promote
free radical scavenging [18], and inhibit apoptosis [19].

Alterations in microcirculation can be investigated
using sidestream dark-field (SDF) imaging (MicroScan;
MicroVision Medical, Amsterdam, The Netherlands).
SDF imaging is a well-validated, stroboscopic LED ring-
based imaging modality introduced to observe microcircu-
lation clinically [20]. SDF technology has been used to
study changes in the microcirculation under various clin-
ical conditions in both animal [21] and human studies
[22]. SDF has also been used to investigate cortical brain
microcirculation in animals with different pathological
conditions, mainly in models of sepsis [23—26].

The aim of this animal study was to compare the
effects of equivolemic, equiosmolar solutions of MTL
and HTS on cerebral cortical microcirculation in a
rabbit craniotomy model.

Methods

Animals

All experimental procedures were performed after
approval from the Animal Welfare Body of the Charles
University in Prague, Faculty of Medicine in Hradec
Kralove, Czech Republic (approval no. 17-16/2014-6848)
in accordance with Czech legislation on the protection
of animals, which complies with Directive 2010/63/EU
of the European Parliament and Council. Ten male
and female rabbits (New Zealand white rabbit; weight,
2.0-3.0 kg; VELAZ 34081/2008-10001, CZ 21906828,
Unétice, Czech Republic) were included in the study.
The animals were housed in a standard cage at 21 °C
under a 12-h dark/12-h light cycle with unrestricted
access to laboratory chow and tap water. After a 1-week
acclimatization period, the rabbits were used for the
study.

Anesthesia and surgical preparation

After an overnight fast with unrestricted access to tap
water, the rabbits were anesthetized using an intramus-
cular induction dose of ketamine (40 mg/kg) and xyla-
zine (4 mg/kg). The animals were placed in the supine
position on an operating table. The body locations
used for cannulation, electrocardiogram electrodes,
and tracheostomy were shaved. Intravascular cannulas
(Vasofix® Safety, B.Braun, Melsungen, Germany) were
inserted in both marginal ear veins (G24) and the right
central ear artery (G22) for continuous blood pressure
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monitoring, arterial blood gas analysis, and continuous
infusion of a balanced crystaloid solution (Ringerfundin,
B. Braun, Melsungen, Germany, 10 ml/kg/h), anesthesia,
and a muscle relaxant. Mean arterial blood pressure was
maintained above 50 mmHg with norepinephrine infusion
as necessary.

The animals were tracheotomized after they were sta-
bilized hemodynamically. A cuffless tracheal tube with
an outer diameter of 2.5 mm was inserted between the
third and fourth tracheal rings. After verifying correct
placement by auscultation, mechanical ventilation was
initiated using an anesthesia machine (Cirrus Trans2/
Vent 2, Datex, Helsinki, Finland) with initial settings of
pressure-controlled ventilation, respiratory rate of 40
breaths/min, inspiratory pressure of 14—16 cm H,O ac-
cording to the weight of the rabbit, and a positive end-
expiratory pressure of 3 cm H,O (lowest value on the
ventilator), which was adjusted according to the first
blood gas analysis results. The ventilator setting was not
changed after osmotherapy. Mean arterial blood pressure
(MAP), heart rate, and rectal temperature were recorded
throughout the study. Rectal temperature was maintained
at 38.5-39.5 °C using a heating plate and a thermoisola-
tion blanket. Balanced anesthesia was maintained using
isoflurane (0.6—1 vol%, Forane, AbbVie Inc., Chicago, IL,
USA) in a mixture of 1 I/min oxygen and 1.2 | air with
an inspiratory oxygen fraction (FiO,) of 50-55 %, con-
tinuous intravenous infusion of fentanyl (0.4 pug/kg/min,
Fentanyl Torrex, Chiesi Pharmaceuticals GmbH, Vienna,
Austria), and the muscle relaxant pipecuronium bromide
(0.6 mg/kg/h, Arduan, Gedeon Richter Plc., Budapest,
Hungary).

Each animal was subsequently rotated into the prone
position, and the right temporo-parieto-occipital area of
the head was shaved. The skin and periosteum of the
skull were incised and reflected, and bleeding was
stopped by bipolar electrocoagulation. The margins of
the exposed area were determined by the midline, the
base of the right ear, the external occipital protuberance,
and the right caudal supraorbital process. A 3-mm hole
was drilled through the exposed skull and was increased
in size using a mosquito pean. The final size of the cra-
nial window was obtained using a Kerrisson rongeur.
Bleeding from the diploe was stopped using bone wax.
The dura mater was cut carefully around the edges of
the cranial window using microscissors to minimize brain
surface injury. The dimensions of the cranial window were
approximately 12 x 8 mm, with intact arachnoid mater at
the base of the window. A 15-min stabilization period was
maintained after controlling bleeding. During this period,
the wound was flushed frequently with sterile 37 °C nor-
mal saline, hemodynamic data were recorded, a sample
of arterial blood was sent for laboratory examination
(levels of blood gases, sodium, potassium, chlorides, and
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hemoglobin), a SDF probe was attached to the brain
surface, and initial SDF imaging was performed.

SDF imaging procedure

The SDF imaging probe was covered with a sterile plastic
sheath and placed above the target tissue; a conventional
hand-held technique was used. The sites of interest on the
brain surface were selected randomly. Exposed tissues,
other than those covered by the SDF imaging probe, were
moisturized intermittently using 37 °C sterile normal sa-
line. SDF imaging data were recorded digitally from three
different areas (fields) within the site of interest for each
animal at each measurement, and video clips lasting at
least 20 s were recorded from each area (total of three
video clips). Analysis of flow in larger vessels was used as
a quality control measure to ensure that excessive pres-
sure was not applied to the tissue [27].

Experimental groups

Two animals were used to test the feasibility of this
model, and 18 animals were included in the study. Two
animals died during the instrumentation phase. Sixteen
animals were randomized (a computer-generated ran-
dom list of animals was used) to receive 3.75 ml/kg body
weight of either 3.2 % HTS (HTS group) or 20 % manni-
tol (MTL group) solution administered intravenously
over 15 min using an infusion pump after the initial SDF
measurement. Both solutions had the same osmolarity
(1099 mOsm/l) and were infused via a peripheral venous
catheter. The 3.2 % HTS solution was prepared by the
hospital pharmacy. The volume infused was equivalent
to a dose of 0.75 g/kg body weight MTL. A second set
of SDF imaging data were obtained, hemodynamic data
were recorded, and a sample of arterial blood was sent
for laboratory examination (including blood lactate
levels) 20 min after infusing MTL or HTS. The animals
were sacrificed at the end of the experiment using an
overdose of thiopentone (30 mg/kg body weight).

The team members were blinded to the assigned
groups while preparing the animals, acquiring data,
analyzing the video clips, and conducting the statistical
analysis. The administered solution was drawn up off-
site and administered by an unblinded co-worker (a
laboratory staff member).

Off-line analysis

Video clips were randomly coded and analyzed offline
by a single observer blinded to file order. Two clearest
and most stable parts of each video clip (sequences) that
met the software’s stability criteria were selected for the
analysis. Flow in larger vessels was checked to ensure
that excessive pressure was not applied during recording.
A total of six sequences were analyzed per animal per
measurement, and the average was used for subsequent

Page 3 of 8

calculations. The final on-screen magnification of the im-
ages obtained using the SDF imaging device was 325-fold
the original, and the actual size of the field evaluated was
1280 x 960 pm.

Microcirculatory parameters were measured using
AVA V3.0 software (AMC, University of Amsterdam,
Netherlands). To decrease possible inter-observer vari-
ability, all analyses were performed by a single, blinded
researcher (VDjr).

The following parameters were analyzed offline:

1. Total small-vessel density (SVD) and all-vessel
density (TVD) were defined as the total length of
the respective vessels inside the image divided by the
total area of the image. Small vessels were defined as
those with diameters <25 pm [27].

2. The DeBacker score, given in mm ™, was defined as
the number of vessels crossing three arbitrary
horizontal and three vertical equidistant lines
(drawn on the screen) divided by the total length of
the lines [27].

3. Microvascular flow index was calculated as an average
value of the semiquantitative score (0 = absent flow,

1 = intermittent flow, 2 = continuous sluggish [slow]
flow, 3 = continuous [normal] flow, 4 = hyperdynamic
[fast] flow) of the microvascular flow in the four
image quadrants, as assessed subjectively by an
observer [27]. Absent flow was defined as no flow
throughout the recorded image, intermittent flow as
at least 50 % of the recorded time with no flow,
sluggish flow as continuous but slow flow, and
continuous flow as fast flow lasting throughout the
recording.

4. The proportion of perfused vessels (PPV) was
defined as the percentage of all visible vessels with at
least sluggish flow. Perfused small vessel density
(PSVD) and perfused vessel density (PVD) were
obtained as SVD and TVD multiplied by the
respective proportion of perfused vessels.

Statistical analysis
A power analysis using an a error of 0.05 and [ error of
0.2 was performed based on previously published brain
microcirculatory data for rabbits [23] using MedCalc
7.6.0. (MedCalc Software, Ostend, Belgium). The sample
size needed for the t-test (independent groups) to detect
a 15 % difference in SVD or TVD and a 20 % difference
in the DeBacker score was calculated. This calculation
yielded a sample size of 16 subjects (eight subjects per
group). The sample size was increased to 18 animals to
compensate for potential dropouts and inaccurate pre-
dictions used for the power analysis.

The continuous variable results are presented as
means * standard deviations or as medians with
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interquartile ranges based on the results of a test of the
normality of the distribution using a one-sample Kol-
mogorov-Smirnov test. Differences in sex were analyzed
using Fisher’s exact test. The Mann—Whitney U-test was
used to compare results between groups when the sample
distribution was not normal (pH, PaCO,, PPV, MFI, dose
of catecholamines, and lactate levels). An unpaired ¢-test
was used to compare all other results between groups. A
P value < 0.05 was considered to indicate significance. The
statistical analysis was performed using MedCalc 7.6.0.

Results

Sixteen animals completed the study. No differences
were observed in the demographic variables or initial
hemodynamic and laboratory data with the exception of
heart rate, which was higher in the MTL group than that
in the HTS group (Table 1).

Table 2 lists the microcirculatory parameters. No
significant differences were observed between the
groups before the use of osmotherapy. After osmotherapy,
lower values of PPV (P =0.0379), PSVD (P =0.0474),
PVD (P =0.0457), and MFI (P =0.0207) were ob-
served in the MTL group compared with the HTS
group.

Table 3 compares the hemodynamic data and laboratory
values, as well as the use of fluids and catecholamines, be-
fore and after osmotherapy. After osmotherapy, higher
blood sodium levels were observed in the HTS group
compared to pre-osmotherapy levels (P =0.0007) and
compared to MTL group (P = 0.0001).

We observed a non-significant trend toward higher
lactate levels (1.65 [1.20, 2.25] vs. 2.70 [2.00, 3.60], P =
0.1049) and lower arterial PaCO, levels (6.43 [5.76, 9.42]
vs. 5.2 [4.76, 8.54], P = 0.1605) in the MTL group.

Figure 1 provides a representative image of rabbit
cerebral microcirculation.

Table 1 Characteristics of the experimental groups
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Figure 2 shows the pre- and post-treatment PVD
values for each rabbit in both groups.

Discussion

We demonstrated improved preservation of cerebral
cortex microcirculation with HTS compared with MTL
in an animal craniotomy model; the observed differences
were caused mainly by a higher proportion of perfused
vessels in the HTS group.

The diuretic effect is an important component of the
MTL effect on the brain [5, 6, 28]. The diuretic response
to MTL, which onsets almost immediately, is strongest
during the first 10 minutes after MTL infusion [29].
MTL infusion has also been shown to decrease cardiac
stroke volume after short-term improvement [29]. The
strong diuretic effect of MTL may cause undesired
hypovolemia. Rozet at al. described a significant rise in
serum lactate levels during surgery in patients receiving
MTL for brain debulking [4]. In contrast, HTS is consid-
ered a volume expander that improves regional blood
flow [8], and it has a weaker diuretic effect [4, 5, 28]. Al-
though we observed no group differences in lactate
levels or other macrocirculatory parameters, the lower
proportion of perfused vessel density could possibly be
caused by reduced brain perfusion due to diuresis-
induced or worsening hypovolemia, the severity of which
was not associated with macrocirculatory compromise.
Unfortunately, we did not measure urine or cardiac out-
put or cerebral blood flow for technical reasons.

HTS is also considered more effective for brain relax-
ation and intracranial pressure control in patients under-
going neurosurgical procedures [6]. These effects may also
account for the observed differences in microcirculation.

Hypertonic solutions may also modify blood viscosity,
the interaction between endothelial cells and polymorpho-
nuclear cells, blood rheology, and permeability of the BBB
[11, 30]. A recent study reported no difference in BBB

Group HTS (n=29) Group MTL (n=8) P
Weight (kg) 2.382+0.227 2363 +£0.159 0.8415
Sex (male:female) 35 53 06193
Mean arterial pressure (mmHg) 66.3+49 652+59 0.6951
Heart rate (beats/min) 189+ 14 204+7 0.0230
Temperature (°C) 392+06 389+06 0.3837
pH 736+0.05 735+0.10 0.7662
PaCO, (kPa) 6.91+089 7.21£262 0.7655
Pa0, (kPa) 21.2+82 21.0+89 0.9613
HCO®- (mmol/l) 294+22 290+44 0.8158
Hemoglobin (g/1) 105+4 105+8 0.9076

Weight, sex, mean arterial pressure, heart rate, temperature, blood gases, and hemoglobin values after initiating mechanical ventilation. HTS, hypertonic saline;

MTL, mannitol
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Table 2 Microcirculatory parameters
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Before osmotherapy

After osmotherapy

Group HTS (n=28) Group MTL (n=28) P Group HTS (n=8) Group MTL (n=28) p
SVD (mm.mm™?) 744 +301 6.55+2.36 05216 6.82+1.95 586+ 134 0.2699
TVD (mm.mm?) 10.60 +2.44 10.06 + 241 0.6636 9.99 245 8.04 £2.00 0.1022
PSVD (mm.mm™?) 733+£295 643+2.18 04978 6.70+2.06 4514200 0.0474
PVD (mm.mm™?) 1037 £2.52 9.88+245 07021 975+ 260 6.73+£289" 00457
PPV (%) 97.1£39 98.1 £3.1 0.5900 969 +4.7 7984225 0.0541
MFI 3.00 (2.97;3.00) 295 (2.79;3.00) 03282 3.00 (2.983.01) 266 (2.52;2.88) 0.0207
DeBacker score (mm™") 6.59+ 1.33 643+ 157 0.8247 649+ 1.58 532+ 1.14 0.1128

SVD small vessel density, TVD total vessel density, PSVD perfused small vessel density, PVD perfused vessel density, PPV proportion of perfused vessels, MF/

microvascular flow index, HTS hypertonic saline, MTL mannitol
“P < 0.05 vs Before osmotherapy

permeability after 15-min infusion of MTL or HTS [30].
In that study, the water content of brain tissue samples in
both the MTL and HTS groups was significantly greater
compared with controls, but there was no difference be-
tween the two experimental groups [30]. In contrast, an-
other recent animal study [28], which used a 45-min HTS
infusion time, reported higher brain water content in the
HTS group. In theory, tissue edema could be associated
with a lower number of visible vessels, e.g., smaller TVD
and SVD values. Although we observed a trend toward
lower TVD and SVD in the MTL group, the difference
was not significant.

Changes in cortical brain microcirculation due to
MTL or HTS have not been evaluated using SDF im-
aging. Sepsis-induced changes in brain microcirculation

have been described using the same technology [25, 26].
Lower PVD values were associated with lower brain oxy-
gen tension values. Intravital video microscopy of pial
microcirculation has been used to observe the effects of
MTL and HTS on the interaction between poly-
morphonuclear and endothelial cells in a model of
trauma-induced brain inflammation [30], but changes
in cortical perfusion have not been evaluated. Orthog-
onal polarization spectral imaging of the brain cortex
during aneurysm surgery has been used to observe the
small cortical blood vessels directly and to quantify their
responses to hypocapnia, but the effects of osmotherapy
have not been evaluated [31].

Our study had several limitations. The number of
animals in each group was small, and higher numbers

Table 3 Hemodynamic and laboratory data and use of fluids and catecholamines

Before osmotherapy

After osmotherapy

Group HTS (n=8)  Group MTL (n=8) P Group HTS (n=8)  Group MTL (n=8) P
MAP (mmHg) 567 56+4 0.9449 55+5 54+7 0.7726
Heart rate (beats/min) 20613 213+£9 0.2439 21016 2157 04281
pH 7.34+0.15 735+£0.19 0.8466 7.34+0.1 733+£0.2 0.9044
PaCO; (kPa) 6.86+2.64 639+271 0.7408 7.57+247 725+458 0.8644
Pa0, (kPa) 243£95 22.5+£100 0.7151 233+94 23.0+£9.7 0.9503
HCO- (mmol/l) 266+52 257+38 0.6918 303+4.2 269+80 03139
Hemoglobin (g/1) 945+63 91.9+103 0.5523 97152 945+ 21.1 0.7383
Sodium (mmol/I) 139.0+09 1386+12 04365 1422420 1375477 0.0001
Potassium (mmol/l) 32+04 36+0.7 0.1353 36+£05 38+05 0.6041
Chlorides (mmol/l) 1049+19 1040+42 0.5845 1070+22 103.5+55 0.1154
Glucose (mmol/l) 124+23 138+36 03811 13.1+44 13.7+7.1 0.8583
Lactate (mmol/l) - - 296+ 397 3.00+1.70 0.9808
Infused fluids (ml) - - 42+9 44+10 0.6266
Number of animals recieving catechalamines 2 4 0.6038 2 4 0.6038
Highest dose of catechoalmines (ug/h) 0.00 (0.00;0.30) 0.25 (0.00;3.00) 04418 0.00 (0.00;0.30) 0.25 (0.00;3.00) 04418

MAP mean arterial pressure, HTS hypertonic saline, MTL mannitol
“P < 0.05 vs Before osmotherapy
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Fig. 1 Representative sidestream dark-field image of rabbit cerebral microcirculation. Objective microscope (5x), on-screen 325X, size of
image = 1280 x 960 um. C, capillary; V, venule
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may have resulted in greater differences between the
groups and decreased risk of false-positive results. An
experimental group that underwent cannulation, craniot-
omy, and no osmotherapy would have provided a posi-
tive control and additional information about baseline
injury, edema, and the osmotic agent responsible for the
observed differences in microcirculation. The surgery or
anesthesia may have played a role in the observed
changes, although we tried to avoid local brain injury,
minimize the number of manipulations, and avoid tissue
desiccation by administering warm saline solution. We
also performed a large craniectomy that prevented any
potential influence from intracranial pressure; therefore,
it may not be appropriate to generalize our findings to
subjects with increased intracranial pressure. We visual-
ized only pial vessels and the frontal cortex, and these
areas may not be representative of deeper brain struc-
tures. We also used a rabbit brain, which has unknown
similarities in blood flow regulation to those of the hu-
man brain., Therefore, it is not clear whether our results
could be safely extrapolated to humans. Due to the posi-
tioning of the animals, which was unchanged during the
study, we were unable to investigate microcirculation in
other regions of potential interest (sublingual region).
Differences in the time-to-peak effect and duration of
action between MTL and HTS are also possible. A vari-
able time-to-peak effect and duration of action have
been described for both MTL and HTS [32], although
some evidence suggests a possible shorter time-to-peak
effect and lower rebound phenomena in subjects with
brain lesions treated with HTS [33]. Changes in micro-
circulation after osmotic therapy were not measured at
multiple timepoints, such that we cannot exclude the
possibility that the observed effects may have been dif-
ferent if other timepoints had been chosen.

Conclusions

Within the limitations of this study, our findings suggest
that an equivolemic, equiosmolar solution of HTS pre-
serves perfusion of the cortical brain microcirculation
better than does MTL in a rabbit craniotomy model. A
human study is warranted to ascertain whether similar
effects occur in patients undergoing scheduled craniot-
omy for brain tumor surgery.
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