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Required propofol dose for anesthesia and time to
emerge are affected by the use of antiepileptics:
prospective cohort study
Kentaro Ouchi* and Kazuna Sugiyama
Abstract

Background: We investigated the impact of the type of neurological disorder on the required propofol dose for
anesthesia and the time to emerge from anesthesia during dental treatment in patients with autism (AU), cerebral
palsy (CP), and intellectual disability (ID), some of whom also had epilepsy.

Methods: We studied 224 patients with a neurological disorder who underwent dental treatment under
intravenous general anesthesia. Patients were categorized according to neurological disorder (AU, CP, and ID; and
with or without an antiepileptic). The propofol dose required for anesthesia, time to emerge, and modeled propofol
blood concentration at emergence were evaluated.

Results: In patients not given an antiepileptic, we found no significant differences in the propofol dose, modeled
propofol blood concentration at emergence, or time to emerge among patients with AU, CP, and ID (P > 0.05).
When using an antiepileptic, the dose of propofol (5.7 ± 1.51 mg/kg/h) was significantly lower than without an
antiepileptic (6.8 ± 1.27 mg/kg/h) (P < 0.0001). The modeled propofol blood concentration at emergence in patients
given an antiepileptic (0.5 ± 0.03 μg/ml) was significantly lower than without an antiepileptic (0.7 ± 0.02 μg/ml)
(P < 0.0001). The time to emerge in patients given an antiepileptic (29.5 ± 12.5 min) was significantly longer
than without an antiepileptic (21.6 min ± 10.0 min) (P < 0.0001).

Conclusion: The propofol dose required for anesthesia and the time to emerge from anesthesia are not
affected by the type of neurological disorder, but are affected by antiepileptic use.

Trial registration: University Hospital Medical Information Network Clinical Trials Registry (UMIN000014179),
Date of registration 4 June 2014.
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Background
Poor quality of oral health care in patients with neuro-
logical disorders has been recognized [1-3]. In dental
practice, intravenous general anesthesia is useful for pa-
tients who are difficult to treat when not sedated such as
those with neurological disorders [4]. Dental patients
with intellectual disabilities need higher doses of seda-
tives than those without intellectual disabilities to obtain
an adequate level of anesthesia [5]. Furthermore, one re-
port has shown that autistic patients have low sensitivity
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to propofol compared to patients with intellectual disabil-
ities [6]. Patients with cerebral palsy may need higher
doses of sedatives due to decreased GABAA receptor bind-
ing [7]. Neurological disorder patients often take an anti-
epileptic drug. Use of an antiepileptic drug may require a
lower dose of propofol, because some types of antiepilep-
tics are known to decrease hepatic metabolism [8].
Therefore, the objective of the present study was to in-

vestigate the relationship between the type of neurological
disorder and the propofol dose required for anesthesia
and the time to emerge from anesthesia during dental
treatment in patients with autism, cerebral palsy, and in-
tellectual disability. We also investigated these parameters
Central. This is an Open Access article distributed under the terms of the
/creativecommons.org/licenses/by/4.0), which permits unrestricted use,
, provided the original work is properly credited. The Creative Commons Public
mons.org/publicdomain/zero/1.0/) applies to the data made available in this

https://upload.umin.ac.jp/cgi-open-bin/ctr/ctr.cgi?function=brows&action=brows&type=summary&recptno=R000016513&language=J
mailto:ken2006anes@yahoo.co.jp
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/publicdomain/zero/1.0/


Ouchi and Sugiyama BMC Anesthesiology  (2015) 15:34 Page 2 of 7
in relation to use or non-use of an antiepileptic. This study
used a prospective cohort study design.

Methods
We studied dental patients with neurological disorders
who were treated under intravenous general anesthesia
at the Dentistry Outpatient Section for Patients with
Neurological Disorders, Kagoshima University Medical
Dental Hospital, from June 2007 to March 2013. Intravenous
general anesthesia was administered by an anesthesiologist
certified by the Japanese Board of Dental Anesthesiologists
who had received the necessary training in general
anesthesia. Written informed consent for dental treat-
ment and this study under intravenous general anesthesia
was obtained from each patient or from the guardian or
caregiver in cases of patients with severe neurological
disorders. The institutional review board of Kagoshima
University Medical Dental Hospital approved the study
protocol.
The definition of a neurological disorder was any pa-

tient who had been formally assessed and found to have
autism, cerebral palsy, or intellectual disability. We ex-
cluded patients with cerebral palsy from the category of
intellectual disability. Patients who did not use target-
controlled infusion (TCI) or did not consent to the study
were excluded.

Intravenous general anesthesia protocol
The patients did not receive premedication. A bispectral
index sensor (BIS) (BIS Quatro, XP Platform; Aspect
Medical Systems Inc., Norwood, MA, USA) was attached
to the patient’s forehead and connected to a BIS monitor
(A2000 BIS monitor XP, Aspect Medical Systems Inc.) to
evaluate the level of intravenous general anesthesia. The
BIS value was collected continuously and recorded
every 15 s. Intravenous general anesthesia was in-
duced with bolus intravenous administration of midazo-
lam 0.04 mg kg−1 and maintained with continuous
infusion of propofol. After the intravenous administration
of midazolam, using a propofol TCI pump (3500 TCI,
Graseby Medical Ltd., Hertfordshire, UK, or TERUFUSION
TE-371, Terumo Co., Tokyo, Japan) with a built-in TCI
system (Diprifusor, AstraZeneca Plc., London, UK) and ac-
cording to the parameters reported by Marsh [9], continu-
ous intravenous infusion of propofol was initiated using
the TCI method. The dose of propofol was titrated to
achieve a BIS of 50 and achieve an adequate level of
anesthesia: asleep but not responding to stimulation.
Dental treatment was initiated after the BIS value had
stabilized. During dental treatment, the BIS value was
maintained at 30–50 by adjusting the target propofol level
using TCI. A local anesthetic was used appropriately by
the operating dentist. Endotracheal intubation was not
performed, and spontaneous breathing was maintained.
Propofol was discontinued at the end of the dental treat-
ment. The intravenous general anesthesia protocol for
adjusting the propofol level is shown in Figure 1.

Measurement of parameters
We investigated the dose of propofol administered, the
time to emerge from intravenous general anesthesia, and
the modeled propofol blood concentration at emergence.
The dose of propofol administered (mg/kg/h) was defined
as the required dose of propofol (mg)/patient’s body weight
(kg)/administration time (h). Time to emerge (min) was
defined as the time from the discontinuation of propofol
until spontaneous eye opening of the patient with the pa-
tient’s name called every 3 min. The modeled propofol
blood concentration at emergence (μg/ml) was defined as
the value that was displayed in the plasma concentration
site by the TCI pump when the patient awoke.

Statistics
Two hundred twenty-four patients were included and cat-
egorized according to disability (autism, cerebral palsy, or
intellectual disability; with or without an antiepileptic).
We tested the data for normality with Levene's test. For
comparison of more than three groups, a two-way ANOVA
and the Tukey-Kramer test were employed for continuous
variables. For comparison of two groups, the unpaired
t-test was employed for continuous variables, and the
chi-square test for categorical variables. JMP software
(SAS Institute Inc., Japan) was used for statistical analysis,
and P < 0.05 was regarded as statistically significant. The
results are presented as the mean ± standard deviation
(SD).

Results
Tables 1 and 2 show the patients’ demographics. Two
hundred twenty-four patients with neurological disorders
were categorized into those with autism (AU; n = 62),
cerebral palsy (CP; n = 28), or intellectual disability (ID;
n = 134). Among these patients, 77 also had epilepsy and
received antiepileptic medications, including carbamaze-
pine, phenytoin, phenobarbital, zonisamide, topiramate,
and valproate. Table 3 shows the number of patients re-
ceiving each type of antiepileptic. Among patients receiv-
ing antiepileptics, 65 patients received more than one
antiepileptic. A local anesthetic (1:80,000 adrenaline in-
cluding 2% lidocaine) was used appropriately during den-
tal treatment, and consumption was less than 1.8 ml.
We compared the use and non-use of an antiepileptic

in each category of neurological disorder. Patients were
categorized into those with autism without an epileptic
(AU; n = 59), autism with an epileptic (AU with Epi; n = 3),
cerebral palsy without an epileptic (CP; n = 8), cerebral
palsy with an epileptic (CP with Epi; n = 20), intellectual
disability without an epileptic (ID; n = 80), and intellectual



Figure 1 Intravenous general anesthesia protocol. TCI: target-controlled infusion. BIS: Bispectral index.
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disability with an epileptic (ID with Epi; n = 54). We found
significant differences in the dose of propofol adminis-
tered (P < 0.0001), modeled propofol blood concentra-
tion at emergence (P < 0.0001), and time to emerge from
anesthesia (P < 0.0001) among the six groups (Figure 2).
As a post-test, in patients not given an antiepileptic,

we found no significant differences in the dose of propo-
fol administered (mean ± SD; AU: 6.8 ± 1.12 mg/kg/h;
CP: 6.9 ± 1.31 mg/kg/h; ID: 6.8 ± 1.39 mg/kg/h; P = 0.96),
modeled propofol blood concentration at emergence
(AU: 0.7 ± 0.19 μg/ml; CP: 0.7 ± 0.21 μg/ml; ID: 0.8 ±
0.26 μg/ml; P = 0.24), or time to emerge from anesthesia
(AU: 22.1 ± 9.33 min; CP: 21.1 ± 8.90 min; ID: 21.3 ±
10.73 min; P = 0.90) among patients with AU (n = 59),
CP (n = 8), and ID (n = 80) (Table 4).
For the next post-test, we compared the use and non-

use of an antiepileptic in each category of neurological
disorder. The dose of propofol administered to patients
who also received an antiepileptic was lower than that
in patients not given an antiepileptic; the difference
was significant between ID (6.8 ± 1.39 mg/kg/h) and ID
with Epi (5.5 ± 1.60 mg/kg/h) (P < 0.0001). The modeled
Table 1 Patient demographics according to the type of
disability

AU CP ID P-value

Gender (M/F) 56/6 25/3 61/73 <0.0001

Age (years) 20.1 ± 7.92 27.5 ± 5.75 26.8 ± 5.97 <0.0001

Duration of dental
procedure (min)

50.8 ± 17.93 47.7 ± 13.41 50 ± 16.73 0.72
propofol blood concentration at emergence in patients
given an antiepileptic was lower than in those not given
an antiepileptic; the difference was significant between ID
(0.8 ± 0.26 μg/ml) and ID with Epi (0.5 ± 0.28 μg/ml) (P <
0.0001). The time to emerge from anesthesia in patients
given an antiepileptic was longer than in patients not
given an antiepileptic for each neurological disorder; the
difference was significant between ID (21.3 ± 10.73 min)
and ID with Epi (30.4 ± 14.30 min) (P < 0.0001) (Table 5).
We next compared the use and non-use of an antiepi-

leptic in all patients. The dose of propofol administered
to patients who also received an antiepileptic (mean ±
SD; 5.7 ± 1.51 μg/ml; n = 77) was significantly lower than
that in patients not given an antiepileptic (6.8 ± 1.27 μg/ml;
n = 147) (P < 0.0001). The modeled propofol blood con-
centration at emergence in patients given an antiepi-
leptic (0.5 ± 0.03 μg/ml) was significantly lower than
in those not given an antiepileptic (0.7 ± 0.02 μg/ml)
(P < 0.0001). The time to emerge from anesthesia in pa-
tients given an antiepileptic (29.5 ± 12.5 min) was signifi-
cantly longer than in patients not given an antiepileptic
(21.6 ± 10.0 min) (P < 0.0001) (Table 6).
Table 2 Patient demographics according to whether an
antiepileptic was used

No antiepileptic Antiepileptic P-value

Gender (M/F) 98/49 44/33 0.19

Age (years) 24.5 ± 8.04 26 ± 5.15 0.13

Duration of dental
procedure (min)

49.2 ± 17.64 51.4 ± 14.61 0.34



Table 3 Number of patients receiving each type of
antiepileptic

Antiepileptic Number of patients receiving antiepileptic

Carbamazepine 51

Phenytoin 23

Phenobarbital 10

Zonisamide 14

Topiramate 21

Valproate 23

Table 4 Dose of propofol administered, modeled
propofol blood concentration at emergence, and time to
emerge from anesthesia, among the types of disabilities
in patients not given an antiepileptic

AU CP ID P-value

Dose of propofol
(mg/kg/h)

6.8 ± 1.12 6.9 ± 1.31 6.8 ± 1.39 0.96

Concentration at
emergence (μg/ml)

0.7 ± 0.19 0.7 ± 0.21 0.8 ± 0.26 0.24

Time to emerge (min) 22.1 ± 9.33 21.1 ± 8.90 21.3 ± 10.73 0.90
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Discussion
The objective of the present study was to investigate the
relationship between the type of neurological disorder
and the propofol dose required for anesthesia and time to
emerge from anesthesia during dental treatment. In pa-
tients not given an antiepileptic, we found no differences
in the required dose of propofol among patients with aut-
ism, cerebral palsy, and intellectual disability. The results
Figure 2 Dose of propofol administered, time to emerge from anesth
patients that used and did not use an antiepileptic for each neurolog
received an antiepileptic was lower; the differences were significant betwe
propofol blood concentration at emergence in patients given an antiepilep
with Epi, between ID and ID with Epi, and between ID and CP with Epi. Th
was longer; the differences were significant between AU and ID with Epi, a
of this study show that evaluation of sensitivity to anes-
thetics is necessary when considering the use of an antiep-
ileptic, because the required dose of propofol in patients
with ID given an antiepileptic was significantly lower than
in those not given an antiepileptic.
Antiepileptic agents have the potential to inhibit drug

metabolism, resulting in a number of interactions involv-
ing elevation of plasma concentrations of concomitantly
esia, and modeled propofol blood concentration at emergence in
ical disorder. The dose of propofol administered to patients who also
en AU and ID with Epi, and between ID and ID with Epi. The modeled
tic was lower; the differences were significant between AU and ID
e time to emerge from anesthesia in patients given an antiepileptic
nd between ID and ID with Epi.



Table 5 Dose of propofol administered, modeled
propofol blood concentration at emergence, and time to
emerge from anesthesia in patients that used and did
not use an antiepileptic, for each type of disability

No antiepileptic Antiepileptic P-value

Dose of propofol
(mg/kg/h)

AU 6.8 ± 1.12 6.3 ± 0.46 0.99

CP 6.9 ± 1.31 6.3 ± 1.17 0.90

ID 6.8 ± 1.39 5.5 ± 1.60 <0.0001

Concentration at
emergence (μg/ml)

AU 0.7 ± 0.19 0.5 ± 0.15 0.82

CP 0.7 ± 0.21 0.6 ± 0.13 0.96

ID 0.8 ± 0.26 0.5 ± 0.28 <0.0001

Time to emerge (min) AU 22.1 ± 9.33 27.7 ± 8.39 0.96

CP 21.1 ± 8.90 27.5 ± 6.39 0.74

ID 21.3 ± 10.73 30.4 ± 14.30 <0.0001
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administered drugs [10]. Most commonly used antiepilep-
tics are eliminated via hepatic metabolism. Hepatic en-
zyme inhibition usually occurs because of competition at
the enzyme site and results in a decrease in the rate of me-
tabolism of the affected drug [10,11]. Clinically, this is as-
sociated with an increased plasma concentration of the
affected drug and potentially an increased pharmacologic
response. Metabolic reactions are catalyzed by cytochrome
P450 (CYP) and uridine diphosphate glucosyltransferase
(UGT) enzymes. CYP2B6, CYP2C9, and CYP2C19 con-
tribute to the metabolism of propofol [12-14]. CYP2B6
contributes to the metabolism of valproate [15]. CYP2C9
contributes to the metabolism of carbamazepine, pheny-
toin, phenobarbital, and valproate. Thus, antiepileptics
such as carbamazepine, phenytoin, phenobarbital, and val-
proate contribute to the competitive inhibition of hepatic
CYP2B6 and CYP2C9, because metabolism CYP is the
same as propofol. Zonisamide inhibits the propofol me-
tabolizing enzymes CYP2C9 and CYP2C19 in vitro [16].
Valproate inhibits CYP2C9 in vitro [17]. Clinically, pheny-
toin inhibits CYP2C9, and similarly, topiramate inhibits
CYP2C19 [18,19]. Carbamazepine inhibits 2C19 [20]. In
addition, in vitro, phenytoin, phenobarbital, and valproate
inhibit UGT 1A9, which mediates glucuronic acid conju-
gation, the main metabolic pathway of propofol [21-23].
In this way, all antiepileptics used by our study patients
Table 6 Dose of propofol administered, modeled
propofol blood concentration at emergence, and time to
emerge from anesthesia in patients that used and did
not use an antiepileptic in all types of disabilities

No antiepileptic Antiepileptic P-value

Dose of propofol
(mg/kg/h)

6.8 ± 1.27 5.7 ± 1.51 <0.0001

Concentration at
emergence (μg/ml)

0.7 ± 0.02 0.5 ± 0.03 <0.0001

Time to emerge (min) 21.6 ± 10.0 29.5 ± 12.5 <0.0001
have an inhibitory effect on propofol metabolism. Thus,
antiepileptic drugs decrease the clearance of propofol.
Propofol may also be metabolized by non-liver mecha-
nisms such as pulmonary and renal metabolism [24,25].
Inhibition of pulmonary metabolism and renal metabol-
ism by antiepileptics has been not reported. Thus, antiepi-
leptic drugs have been suggested to increase the blood
concentration of propofol by inhibiting the action of CYP
and UGT. Similarly, the metabolism of anesthetics such as
propofol may be inhibited because different drugs com-
petitively inhibit a common CYP [26,27]. Therefore, anti-
epileptic drugs reduce the required dose of propofol and
extend the time needed for emergence from anesthesia.
Patients with ID have been reported to require higher

doses of sedatives to obtain an adequate level of anesthesia
[5]. Among patients with disabilities, those with AU re-
quire higher doses of sedatives to obtain an adequate level
of anesthesia compared to patients with other disabilities
such as ID [6]. In these reports, the group requiring a
lower dose included those who were given an antiepilep-
tic. Therefore, these reports suggest that patients with a
neurological disorder or with ID require less propofol than
patients not given an antiepileptic including those without
a neurological disorder or with AU, due to the inhibitory
action of the antiepileptic drug on CYP. Also, these re-
ports suggest that the required dose of propofol may not
be affected by the type of disability when excluding those
given an antiepileptic.
Variations in individuals regarding the propofol dose

required for anesthesia and the time for emergence from
anesthesia are thought to result from pharmacokinetic
and pharmacodynamic factors. The blood concentration
of propofol may increase in proportion to the adminis-
tered dose if drug metabolism is slow. Assessment of the
anesthesia level according to an objective parameter
such as an exclusive electroencephalographic monitor
(BIS monitor) can be useful [28-31]. In this study, BIS
and TCI were used to establish the dosage of propofol.
This method sets the blood concentration, and adminis-
tration of anesthetic establishes a constant anesthesia
level. Accordingly, administering a lower dose because
the blood concentration was set low may decrease BIS if
drug metabolism is slow. Thus, if drug metabolism is
slow, the administered dose is decreased, and the time
to emerge from the same anesthesia level is delayed.
Lidocaine has been reported to reduce propofol re-

quirements during the maintenance phase of total intra-
venous anesthesia [32]. This report used a large quantity
of intravenous lidocaine (>1.5 mg/kg). This report also
indicated that lidocaine reduces the propofol require-
ments, particularly during surgical stimulation, and the
blood levels of propofol measured at the end of the infu-
sions were similar to those without lidocaine. Therefore,
lidocaine does not influence emergence, even when used
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in large quantities. In our study, we used a low level of
lidocaine (no more than 1.8 ml 2% lidocaine), and the
administration route was local, not intravenous. There-
fore, we believe that locally administered lidocaine has
little effect on propofol anesthesia.
Our study has several limitations. From the present re-

sult and other reports, we considered that antiepileptics
inhibit propofol metabolism, resulting in elevation of
plasma concentrations of propofol. However, we did not
examine the blood concentration. Rather, we measured
the value that was displayed by the TCI pump when the
patient awoke. Determination of propofol metabolism
may be possible if the propofol blood concentration at
the end of administration and later are measured. An-
other limitation of our study is that all antiepileptics
were grouped together for analysis because not many pa-
tients were taking a single antiepileptic alone. As previ-
ously stated, all antiepileptics used by patients in this
study have an inhibitory effect on propofol metabolism.
However, if the blood concentration of the antiepileptic
had been measured, the strong influence of the antiepilep-
tic drug on propofol metabolism may have been detect-
able. Another limitation of our study is the small number
of patients except for those with ID. The number with AU
with Epi was three patients. In this study, in patients with
ID given an antiepileptic, the required dose of propofol
was significantly lower, the modeled propofol blood con-
centration at emergence was significantly lower, and the
time to emerge was significantly longer compared to those
not given an antiepileptic. Patients with AU and patients
with CP did not show a significant difference between use
and non-use of an antiepileptic. However, if we had exam-
ined a larger number of patients with AU and CP, we may
have been able to precisely examine the influence of the
antiepileptic drug in each type of disability.
In this study, in patients not given an antiepileptic, we

found no significant differences in the dose of propofol
administered, time to emerge from intravenous general
anesthesia, or modeled propofol blood concentration at
the time of emergence among patients with AU, CP, and
ID. On the other hand, in patients with ID given an anti-
epileptic, the required dose of propofol was significantly
lower, the modeled propofol blood concentration at
emergence was significantly lower, and the time to emerge
was significantly longer compared to those not given an
antiepileptic.

Conclusions
The propofol dose required for anesthesia and the time to
emerge from anesthesia are not affected by the type of dis-
ability but are mainly affected by the use of an antiepileptic.
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