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Abstract

controlled trial.

Technology-enhanced learning

Background: In preparing novice anesthesiologists to perform their first ultrasound-guided axillary brachial plexus
blockade, we hypothesized that virtual reality simulation-based training offers an additional learning benefit over
standard training. We carried out pilot testing of this hypothesis using a prospective, single blind, randomized

Methods: We planned to recruit 20 anesthesiologists who had no experience of performing ultrasound-guided
regional anesthesia. Initial standardized training, reflecting current best available practice was provided to all
participating trainees. Trainees were randomized into one of two groups; (i) to undertake additional simulation-based
training or (ii) no further training. On completion of their assigned training, trainees attempted their first
ultrasound-guided axillary brachial plexus blockade. Two experts, blinded to the trainees’ group allocation,
assessed the performance of trainees using validated tools.

Results: This study was discontinued following a planned interim analysis, having recruited 10 trainees. This
occurred because it became clear that the functionality of the available simulator was insufficient to meet our
training requirements. There were no statistically significant difference in clinical performance, as assessed
using the sum of a Global Rating Score and a checklist score, between simulation-based training [mean 32.9
(standard deviation 11.1)] and control trainees [31.5 (4.2)] (p = 0.885).

Conclusions: We have described a methodology for assessing the effectiveness of a simulator, during its
development, by means of a randomized controlled trial. We believe that the learning acquired will be useful if
performing future trials on learning efficacy associated with simulation based training in procedural skills.

Trial registration: ClinicalTrials.gov identifier. NCT01965314. Registered October 17th 2013.
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Background

The learning environment in which resident anesthesiol-
ogists acquire procedural skills has fundamentally chan-
ged. Training programmes are shorter and afford fewer
training opportunities. Patient, institutional and regulatory
expectations limit acceptance of trainees acquiring skills
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by “practicing” on patients. In the context of ultrasound-
guided axillary brachial plexus blockade (USgABPB), we
have demonstrated that anesthesiologists in Ireland
perceive a lack of learning opportunity as being the
most important impediment to procedural skill devel-
opment [1].

It is indisputable that simulation will play in an in-
creasingly important part in the training and assessment
of procedural skills [2]. Simulation offers trainees an op-
portunity to hone skills in a risk-free environment.
Training bodies are attempting to move from traditional
time-based training programmes to competency-based
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training [3]. Since January 2010, the American Board of
Anesthesiology (ABA) has included simulation-based
training as a mandatory component of Maintenance of
Certification in Anesthesiology (MOCA) [4]. A recent
meta-analysis demonstrated that technology-enhanced
simulation-based training is associated with large posi-
tive effects on knowledge, skills, and behaviors, and
moderate effects on patient based outcomes [5].

To date, simulation in ultrasound-guided regional
anesthesia (UGRA) has largely been limited to tissue
(e.g. turkey breasts or cadavers) and non-tissue (e.g. gelatin
or tofu) phantoms [6,7]. Computer-based VR simulation
has been utilized effectively for training in a number of pro-
cedural domains, e.g. laparoscopic surgery [8] and colonos-
copy [9]. Grottke et al. [10] have previously described the
development of a virtual reality (VR) simulator for regional
anesthesia guided by peripheral nerve stimulation. Previous
work at our institution described the development of a
similar device simulating spinal anesthesia [11]. VR simula-
tion offers a number of advantages over the alternatives; (i)
variety of predefined standardized scenarios, (ii) multiple
anatomical variations, (iii) models do not degrade with
repeated needle insertion, (iv) realistic representations of
anatomy acquired via MRI, CT or ultrasound derived data,
(v) normal variation of a single anatomical site can be rep-
resented, and (vi) multiple anatomical sites (thus different
types of blocks) can be represented in a single simulator
[12]. We have participated in developing a VR visuo-haptic
simulator to train USgABPB, as part of a collaborative
project with the National Digital Research Centre
(www.ndrc.ie). The simulator is intended to render the
haptic (related to tactile and proprioceptive) sensa-
tions normally felt during manipulation of both needle
and ultrasound probe. We set out to assess the effect
of training USgABPB utilizing a novel prototype simu-
lator on skill transfer, during its development.

We hypothesized that VR-based training offers an
additional learning benefit over standard training (using
cadaveric dissection and human volunteers) in preparing
novice anesthesiologists to perform their first USgABPB
in the clinical setting. We carried out pilot testing of this
hypothesis using a prospective, single blind, randomized
control trial.

Methods

This prospective, randomized controlled trial was con-
ducted at Cork University Hospital and St Mary’s Ortho-
paedic Hospital (Cork, Ireland). The Clinical Research
Ethics Commiittee of the Cork Teaching Hospitals approved
the study and the study was registered with ClinicalTrials.
gov (NCT01965314). All subjects, patients and anesthesiol-
ogists, provided written informed consent. We planned to
recruit 20 residents (all College of Anaesthetists of Ireland
affiliated trainees) with no experience of performing UGRA.
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The sample size was arbitrarily based on previous studies
indicating the effectiveness of VR simulation-based teach-
ing procedural skills to novices [8]. Subjects provided base-
line personal data, experience in practice of anesthesia
(years in training) and handedness. Each subject was asked
to categorize his/her (i) previous experience of peripheral
nerve blockade with peripheral nerve stimulation [0=0
blocks, 1 =1-5 blocks, 2 =5-10 blocks, 3 =10-50 blocks,
4.=50-100 blocks, 5> 100 blocks] (ii) previous experience
of ultrasound-guided vascular access [0 = 0 procedures, 1 =
1-5 procedures, 2=5-10 procedures, 3 =10-50 proce-
dures, 4=50-100 procedures, 5>100 procedures] (iii)
previous attendance at a peripheral nerve blockade course
(incorporating ultrasound-guided techniques) [0 = never,
1 = <half day course, 2 = full day course, 3 = >2 day course,
4 =multiple courses]. Baseline visuo-spatial ability was
assessed using the card rotation, shape memory, and snowy
picture tests (Educational Testing Service) [13]. Psycho-
motor ability was assessed using a grooved pegboard
(Lafayette Instruments, Lafayette, IN). Subjects were ran-
domly allocated (non-stratified) into 1 of 2 groups, (i) the
control group (CQG) or (ii) the simulator trained group (SG)
using random number tables.

Common training

All participating anesthesiologists received standardized
training. These educational sessions took place in the
Department of Anatomy, University College Cork. The
educational sessions were attended by 4—6 trainees. A
single anesthesiologist (BOD) with expertise in both
teaching and performing the procedure delivered all ses-
sions and supervised the trainees during the hands-on
sessions. Each session comprised a number of compo-
nents, namely; (i) a didactic session, (ii) an hands on ses-
sion with appropriately prepared cadaveric specimens,
(ili) ultrasound scanning of a volunteer, and (iv) a need-
ling skills session with tissue phantoms. Subjects were
taught to perform USgABPB using a technique as de-
scribed in Appendix IV and V of ‘The American Society
of Regional Anesthesia and Pain Medicine and the
European Society of Regional Anaesthesia and Pain
Therapy Joint Committee Recommendations for Educa-
tion and Training in Ultrasound-Guided Regional
Anesthesia’ [14]. All ultrasound examinations performed
on volunteers or on patients entailed the use of a Sono-
site M Turbo (Sonosite, Bothell, WA, USA) (or similar
device) with a 7-12 MHz 38 mm linear probe. Following
the educational intervention, all subjects were asked to
give written feedback, by means of a standard form, on
the content and delivery of the session. On completion
of the common training those in the CG received no
further training and those in the SG went on to
complete a proficiency-based training period using a
prototype simulator.
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Simulator training

The simulator was comprised of two PHANTOM
Desktop devices (www.sensable.com, Wilmington, MA,
USA), a desktop computer (Hewlett-Packard, www.hp.
com), a liquid crystal display (LCD) monitor (Samsung
Sync master 2233) capable of rendering 120 frames per
second synchronized with a pair of 3D stereoscopic
glasses (www.nvidia.co.uk), and the H3D API (www.
sensegraphics.se). The SG subjects were asked to scan
and perform procedure specific tasks on a virtual arm.
The model of the arm was informed using 1.5 Tesla
MRI DICOM datasets which generated skin and
bone surfaces. A number of computer generated struc-
tures were added to this model based on typical
anatomical positioning (The Science Picture Company,
www.sciencepicturecompany.com, Dublin, Ireland). These
were the axillary artery and three nerves (representing me-
dian, ulnar and radial nerves). The resultant image was
thus a computer generated “animation”.

Before subjects began simulation-based training, 3 ex-
perts (each of whom had undertaken structured higher
subspecialty training in regional anesthesia and main-
tained proficiency by performing at least 100 UGRA pro-
cedures during the previous year) performed each task
under similar conditions on three consecutive occasions.
The mean values of their performances set a proficiency
level against which subsequent trainee performance was
benchmarked.

Following initial familiarization with the simulator,
lasting 50 — 60 minutes (duration partially due to the
prototypal nature of the device), SG subjects were asked
to complete 4 procedure specific tasks to a predefined
proficiency level, 2 relating to ultrasound scanning (util-
izing a single haptic device) and 2 relating to needle ad-
vancement under ultrasound guidance (concurrently
controlling two haptic devices — see Figure 1). Computer
generated feedback was given to the subject after each
attempted performance of each task. Participants were
required to meet proficiency levels on two consecutive
attempts before passing each task. In order to complete
simulation training the SG participants had to pass all 4
tasks. The tasks were specifically chosen to cover the
pre-procedural scout scan and the needling component
of USgABPB, while also permitting capture of behaviors
likely to lead to significant clinical errors [15]. Table 1
outlines each task, the feedback given and the profi-
ciency level which had to be met. There was no specified
time limit to meet these requirements. Subjects were
free to control the frequency and duration of use of the
simulator. Following initial orientation, training on the
simulator in this study was largely unsupervised. An in-
vestigator was immediately available to address any tech-
nical issues which may have arisen. A flow diagram of
the study design is provided (Figure 2). Figures 3, 4, and
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5 provide sample images, representative of (i) instruc-
tional material, (ii) automated feedback, and (iii) the au-
tomated login process.

Assessment

We aimed to assess the performance of the subjects first
USgABPB within two weeks of completing the educational
interventions. Patients recruited required anesthesia for
forearm/wrist/hand surgery where USgABPB would or-
dinarily be offered as standard care. Informed patient
consent was obtained. Study participant performance of
USgABPB was closely supervised by a trained regional
anesthesiologist. Intravenous sedation was administered as
clinically indicated, and subsequent care of the patient
may have included general anesthesia. Subjects were asked
to perform USgABPB using an in-plane approach and
short-axis view. The procedure was video recorded using a
handheld video recording device (Flip Ultra, www.theflip.
com) in a manner aimed to conceal both the identity of
the patient and the identity of the anesthesiologists per-
forming the block. Two experts in UGRA later evaluated
the video data.

Patient inclusion and exclusion criteria were
Inclusion criteria: ASA grades I and II, age 18—80 years,
capacity to consent, already consented for USgABPB,
Body Mass index 20 — 26 kg/m?

Exclusion criteria: Parameters outside inclusion cri-
teria, contraindication to regional anesthesia, language
barrier, psychiatric history, pregnancy.

Outcome measures

The subject’s performances were assessed retrospectively
based on a task specific, dichotomous, checklist and a
behaviorally anchored 5-point global rating scale previ-
ously validated for this procedure (see Additional file 1)
[16]. Two experts, experienced with this form of evalu-
ation, carried out these assessments. The experts were

Figure 1 Configuration of simulator similar to that during trial.
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Table 1 Task, the feedback given and the proficiency level to be met

Task

Feedback

Proficiency Level

1 Identify the 4 relevant structures represented at  Number of structures correctly identified

a point in the axilla

2 Follow the course of two of these structures
(median and ulnar nerves) from axilla towards
the elbow, while keeping the structures in the
centre of the virtual ultrasound screen

3 Advance a virtual needle towards a specified
target (median nerve) keeping the needle in
plane during advancement

4 Trigger a virtual injectate at an appropriate
distance from the target.

The amount (%) of the structure represented in
the middle of the virtual ultrasound as a
proportion of the total length of the structure
(from axilla to elbow) (out of 100%)

The proportion (%) of needle advancement
which occurred “in plane” as a proportion of
the total distance the needle tip advanced in
the virtual arm

The distance from the needle tip to the target
structure when injection triggered

All four structures identified

Mean expert performance

Mean expert performance

Injection at a distance not less than the mean
expert minimum distance and not more than

the mean expert maximum distance. Needle
tip must also be visualized at the time of
triggering.

blinded to group allocation. The primary outcome meas-
ure was the average value of the sum of (i) global
rating scale (GRS) scores and (ii) total number of pro-
cedural checklist items as assessed by the two blinded
experts. Secondary outcome measures were (i) GRS
scores, (ii) checklist scores, (iii) procedural times (iv)
number of needle passes, (v) block success (as defined
by sensory and motor blockade in the distribution of
all four relevant nerves demonstrated within 15 -
minutes of USgABPB), (vi) block failure (as defined by
an unanticipated need for an additional peripheral
nerve block or an unplanned conversion to general
anesthesia), (vii) participating anesthesiologist confi-
dence levels (measured on a ten point verbal rating
scale, on completion of assessment of the block —
“How confident were you in performing the block?”)
following performance of the USgABPB, and (viii) pa-
tient satisfaction measure (measured on a ten point
verbal rating scale, on discharge from recovery “How
satisfied were you with the block?”).

SPSS version 17.0.2 software (SPSS, Inc., Chicago, IL,
USA) was used for data analysis. Data were analyzed
using Mann—Whitney’s U-test for continuous variables.
A p value of <0.05 was considered significant. Inter-rater
levels of agreement were estimated using Cohen’s Kappa
and percentage inter-rater reliability, defined as agree-
ments/(agreements + disagreements) times 100 [8].

Results

Having originally planned to recruit 20 trainees, this
study was discontinued following a planned interim ana-
lysis. Ten trainee anesthesiologists were recruited from a
university affiliated teaching hospital (Cork University
Hospital) in July 2010, 4 to the Simulation group and 6
to the Control group Recruitment was discontinued be-
cause, it became clear that the functionality of the avail-
able simulator was insufficient to meet our training

requirements. Baseline participant data are summarized
in Table 2. The results of visuo-spatial testing using
Snowy Picture, Shape Memory and Card Rotation Tests
and psychomotor assessment using the Perdue Pegboard
are summarized in Table 3. Trainees in the SG did score
significantly better in the Shape Memory Test than those
in the CG, a measure of visual memory (23.3 (4.6) vs.
12.3 (4.6), p = 0.010). The differences in other visuo-
spatial and psychomotor tests were not statistically
significant.

Video data corruption occurred during the recording
of two participants’ ultrasound-guided axillary brachial
plexus blockade, rendering assessment impossible (both
in CG). As a results, a comparison of primary and sec-
ondary outcome measures involved 8 participants, with
4 in each group (Table 4). There was no statistically sig-
nificant difference in clinical performance between the
groups, as assessed using the sum of the GRS and
CHECKLIST scores. There was also no difference in the
secondary outcomes measured. No participant com-
pleted the performance of the block independently. Data
relating to procedural times, number of needle passes
and block success/failure were therefore not available.
All candidates in both groups were adjudged by expert
consensus to have “failed” in their performance of the
block.

Participant assessment of content and delivery of the
traditional training portion is shown in Table 5. Trainees
in the SG rated elements of traditional training higher
than CG participants. However, the magnitude of the
differences tended to be low.

There was a trend towards a greater interval from
commencement of training (traditional training session)
to block performance in the Simulation group compared
to that in the Control group; however this was not sta-
tistically significant [SG 24.5 (16.1) [mean (std dev)], CG
6.5 (6.0) respectively, p = 0.054].
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Control group (CG)

Assessor 1

Figure 2 Study flow diagram.

Recruit & consent

Input personal data

Baseline visuo-spatial / psychomotor testing

Randomisation

Common training period (two
hours)

Anonomized video generated (Hard copy x 2)

Final Dataset

Simulator Group (SG)

Initial clinical performance

Assessor 2

The inter-rater reliability of the assessment of trainee
performance by review of video was 89.3% (Range 83.7-
93.9%) for checklist scores and 27.8% (Range 0-66.7%)
for GRS scores. The Kappa for checklist scores was
0.749 (p<0.01) indicating a good level of agreement
[17], while the Kappa for GRS scores was not statistically
significant (Kappa =0.037, p=0.628), indicating poor
inter-rater reliability [17]. Table 4 compares i) sum of
global rating scale plus checklist scores, ii) global rating
scale scores, and iii) checklist scores between the two
groups. Participant confidence did not differ statistically

between the group 2 (2.45), and 2.83 (2.64) [mean (std
dev)] in the Simulation and Control Groups respectively
(p=0.587).

Discussion

We have described a methodology for assessing the ef-
fectiveness of simulator based training in improving nov-
ice trainee’s performance in a clinical setting, by means
of a randomized control trial. Our pilot study found no
difference in trainee performance between those who
underwent standard training and those who received
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[ TabWidget - ScoutScanintroduction.ui” =lr=]

Scout Scan Tasks | Probe Alignment | Probe Tracking |

SCOUT SCAN

You will now be presented with a 3D representation of a right
arm. You will have up to 5 minutes to familiarise yourself with the
sytsem and the anatomy. You will then be asked to perform a
number of tasks.

1) Select an appropriate view where you feel all relevant features
are within the ultrasound view

2) Identify all the main features in the view
3) Track the specified nerve along the extent of the arm (start at
the optimal point in the axilla, move down towards the most

distal end of the arm and then finish at the most proximal part of
the arm)

< Start Scout Scan

[ TabWidget -

rmBlockintroduction.ui™

| PERFORM BLOCK

Perform Block Tasks | Needle Inseftiuﬂj

At this point, you would have completed the scout scan and
identified a potential insertion point. You will now be asked to
perform a number of tasks

1) Identify the specified feature in the axilla

2)Insert the needle and advance towards the specified feature
using an in-plane approach

3) Aspirate and inject when you are satisfied with the needle tip
posiiton

= Start Perform Block

==]

[ TsbWidget - ScoutScanintroduction.ui”

Probe Tracking \

PROBE ALIGNMENT

Position the probe on the skin, placing the probe in-a vertical
position along the short axis of the arm. Placing the probe in a
horizontal position along the long axis of the arm generates a
distorted image

 Start Scout Scan

o TabWidget - PerformBlockintroduction.ui®
Perform Block Tasks | Needle Insertion

L

[=l=]

NEEDLE INSERTION

When you have chosen an optimal position where all features can
be cleary identified in the ultrasound screen, select you insertion
point as close as possible adjacent to the probe

< Start Perform Block

[ TabWidget - ScoutScanintraduction.ui® [E]E=]
‘ Scout Scan Tasks ‘ Probe Alignment | Probe Tracking

| PROBE TRACKING

| Position the probe in the axilla, track the features along the arm
| up to the most distal end and then track the features back along
| the arm until you reach the most proximal end

* Start Scout Scan

Figure 3 Sample instruction material.

supplemental simulation-based training. This may have
been due to a Type 2 error or to limitations of the proto-
type simulator (which led to early discontinuation of the
trial). We recruited half our a priori defined group of 20
trainees, at one time point (the recruitment of trainee
anesthetists in our region occurring biannually). Having
trained this cohort, a planned natural point of interim
analysis arose. Simulated sono-anatomy was subject to a
number of limitations (e.g. clinically relevant muscles/ten-
dons/fat were not modeled), resulting in relevant struc-
tures being presented against a relevantly homogenous
background. There are two reasons for this; 1. The

technical requirements to generate simulated structures,
such as biceps or coracobrachialis muscles/tendons, would
be significant and were beyond the resources of our team,
and 2. The computational requirements to render these
secondary structures accurately in real-time, as the user
scanned the virtual arm, would be beyond the capacity of
the available computer processing units. As a result, it is
likely that the simulator allowed for identification of struc-
tures in an unrealistic fashion (i.e. lacked fidelity). Indeed,
one participant in the SG commented that she would have
preferred to attempt to perform the block at an interval
closer to the traditional training session, where she had
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Completed Training Scenario

The path length of the probe while tracking as a propartion of the optmal path length
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Grade History

100

ge

Percenta

o |

2. Probe Tracking Length

Previous Scores

100 5
90
804
70
E
503
40 4
304
204
104
o3

Percent:

S0

80

60

50 ‘

40

30

20

10

o3 =
r T T T
0 1 2 3

T 1
4 5

Previous Attempts
Previous Scores

-I
G

0 1 4 ;
Attempt Number

Previous Scores

Perform Block 100 5
903
80

603
50
404
304
204
104

Percentage

100

N @ o
== =1
beouloi |

603
504

Percentage

N oW s
S & o
Lobiul

104

]
L

T T T 1
0 1 2 3 4 5

Attempt Number

Please choose with section would like to start

@ ScoutScan | () PerformBlock () Practice ? Start

r T
0 1

Attempt Number

T T T 1
2 3 4 5

Figure 4 Sample end of session debrief.

practiced scanning a real human volunteer. It is likely the
simulator had a negative impact in teaching trainees sono-
anatomy relevant to USgABPB. It is possible that this di-
minished any potential improvement in ultrasound-guided
needle advancement. Following our interim analysis, we
elected to suspend further recruitment as further use of
our prototype simulator could have resulted in negative
learning which could have negatively impacted on the care
of real patients.

The recent Association for Medical Education in
Europe (AMEE) Best Evidence in Medical Education
(BEME) guide [18], highlighted outcome measures of
education as one of the key areas requiring further re-
search. This is the first study to look at the transfer of
skills from VR simulation-based training to clinical prac-
tice, for an UGRA procedure. In their analysis of VR-
based training for laparoscopic surgery, Sinitsky et al.
[19] acknowledged that the science of setting proficiency
levels is still ill-defined, describing it as “the most
pressing issue”. We chose to set proficiency levels

based on a limited number of attempts by our group
of experts (mean of first three attempts following ini-
tial familiarization). Sinitsky et al. [19] also recom-
mended that laparoscopic procedural skills are best
learnt through distributed not massed practice. A one
day intensive hands-on course on UGRA is an ex-
ample of massed practice, whereas distributed practice
is spread over a greater period of time (shorter prac-
tice sessions with long intervals between sessions).
In more general studies of the effectiveness of
technology-enhanced learning on medical education,
Cook [5,20] also suggests distributed practice is more
effective than massed practice. The same authors also
found an association between individualized learning
and better non-time based skills outcomes [20]. Fol-
lowing the initial familiarization session, trainee’s use
of the simulator in this study was self-regulated. As a
result, participants could train at a rate which best
suited them and was distributed across a number of
sessions over a number of days.
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If this is your first time using the simulator, please register

.
Login GUIs
[? Login Details - RCT Login Details GULui =3 [ Registration Details - RCT Registration Details GULui [=]z=]
Login Details Registration Details
v | password Login name password

Device Setup @ RightHanded () Left Handed

./

[ section Choice - RCT Section Choice GULui | = |5

Please choose with section you would like to start

Figure 5 Automated login process.

@ ScoutScan - () PerformBlock () Practice
% Start
Database
e
~ lastiogin name username password handed
[1 |20sz_/24 16:44:03 Graham Baitson gbaitson 'gb123 ‘R)ght

Our study is subject to a number of limitations. Firstly
the prototype simulator used was inadequate, in terms
of functionality, to meet the training requirements for
teaching anesthesiologists, novice in UGRA. Our study
sample was small and technical issues with video-
recording decreased the size of the dataset acquired fur-
ther. Inter-rater reliability between experts was poor for
GRS scores. This is likely due to the relatively subjective
nature of GRS assessment. This may have been im-
proved by enhanced training on using the assessment
tools. While inter-rater reliability was good for checklist
scores, such tools are subject to a number of limitations.
It is possible that an assessment tool which specifically
captures clinically relevant errors would be more useful
in assessing procedural skills. Such a tool would be par-
ticularly useful in providing formative feedback. In the
absence of such a validated tool, we chose our primary
outcome measure as a combination of GRS and checklist
scores. The poor inter-rater reliability of the GRS com-
ponent raises questions over the validity of our results.
There was a difference in training time between the two
groups. This difference related to the additional time it
took participants in the simulation group to complete
simulation training to the predefined proficiency level. It
is possible that an improvement in performance in the
SG could have been partially attributed to the increased
training time, had this occurred. It is also possible that,
in this novice population, elements of the traditional
training were more important than those enhanced by
the simulator training. In particular, when compared

to the simulator-generated images, novices appeared
overwhelmed by the amount of information they had to
interpret in reality. The trend towards an increased
interval from the traditional training to block perform-
ance in the SG may have had a negative impact on their
performance. A number of elements of the traditional
training session were rated lower by CG participants
than by SG participants. This study does not look at
cost of training as the simulator was under development
and has no defined monetary value [21]. The simulator
described utilizes haptic devices which are costly. Com-
parisons of haptic and non-haptic based in VR simula-
tion has questioned the need for such devices when
training laparoscopic surgical skills [22]. Future studies
will need to address this question in training UGRA.
Such analysis would have to include both the costs of
the devices themselves and also the potential savings
(e.g. those associated with faster training, more self-
directed learning with lesser requirement for 1:1 teach-
ing with trainers, lesser need for dedicated UGRA
courses). The results of this study have informed the it-
erative development of the simulator. Ultrasound im-
agery in future prototypes will likely be based on real
acquired ultrasound data [23] from which the simulator
will be capable of rendering a real-time image. Rosenberg
et al. have described mannequin-based simulators for
ultrasound-guided regional anesthesia [24]. Based on our
experience in this study, we have cautioned that the ultra-
sound imagery generated not be clinically relevant and
could result in negative learning [25].



O'Sullivan et al. BMC Anesthesiology 2014, 14:110
http://www.biomedcentral.com/1471-2253/14/110

Table 2 Baseline participant data
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Table 4 Primary and secondary outcome measures

Simulation Control Simulation Control Mann-
group (n=4) group group (n=4) group (n=4) Whitney's
(n=6) U-tests
Male: Female 2:2 5:1 GRS + CHECKLIST [mean 329 (11.1) 315 (4.2) p = 0.885
Years Experience in practice of anesthesia 5(0-12) 4.5(0-22) (std dev]
[Median(Range)] GRS 184 (5.8) 15.8 (1.7) p = 0561
Previous Experience of Peripheral Nerve 0.5(0-4) 1.5(0-3) CHECKLIST 145 (5.4) 15.8 (4.6) p = 0564
blockade with peripheral nerve stimulation
Previous Experience of Ultrasound-Guided 2(0-4) 1(0-5)
Vascular Access
Previous Attendance at a Peripheral 0.5(0-2) 0(0-3) L. .. . . .
Nerve Blockade course (incorporating limited to descriptive pieces with few addressing
Ultrasound-Guided techniques) transfer of skills into a clinical setting. In this study we
Handedness 3 Right +1 6 Right attempted to address this deficit.

Ambidextrous

For the purpose of this study simulation-based
training and traditional training were separated into
two discrete components with no overlap (to control
for possible confounding effects). In reality a more
blended approach would be potentially more benefi-
cial. This would likely lessen the negative impact of
deficiencies of, for example, an inadequate training
tool/simulator.

With increasing computational capacity and reduced
cost, it is likely that simulation will move to a more
personal environment where supervision is no longer
a necessary component to the experience [26]. This
may facilitate an individual gaining expertise through
self-regulated deliberate practice. However establish-
ing validity of such devices would be essential. The
potential for a trainee to learn incorrect or dangerous
techniques in an unsupervised simulated environment
could have catastrophic results if transferred into
the clinical domain [26]. To date, publications of
simulation-based training in UGRA have largely been

Table 3 Visuo-spatial and psychomotor testing

Simulation Control Mann-
group (n=4) group (n=6) Whitney’s
U-tests
Snowy pictures 133 (5.6) 10 (4.8) p =0.285
[mean(std dev)]
Shape memory test 233 (4.6) 123 (46) p =0010*
Card rotation test 21 (15.3) 6.67 (10.7) p=0.165
Pegboard - Sum Averages 45.1 (8.0) 43.1 (5.3) p=0522
Right + Left + Both Hands
Pegboard - Assembly 356 (7.8) 323 (5.7) p=0.240

Legend: Visuo-spatial testing using Snowy Picture, Shape Memory and Card
Rotation Tests (Educational Testing Service) and psychomotor assessment
using the Grooved Pegboard (Lafayette Instruments).

*p<0.05.

Conclusions

We believe that the information acquired during this
pilot study will be useful in performing future trials on
learning efficacy associated with simulation-based
training in procedural skills. In particular, confirm-
ation of a degree of fidelity in the challenges rendered
by a simulator is a pre-requisite to carrying out such
a study. We believe that failure to do so, could result
in spurious results due to factors other than the
training or educational value of the simulation-based
programme.

Table 5 Participant assessment of content and delivery of
the traditional training

Simulation Control Mann -
group (n=4) group (n=6) Whitney's
U-tests
Lecture Quality of 10 (10-10) 10 (8-10) p = 0224
Speaker
[median
(range)]
Quality of 10 (10-10) 8 (8-9) p = 0.005*
Slides
Potential to 10 (10-10) 8 (8-9) p = 0.005*
Learn
Cadaveric Delivery of 10 (9-10) 8 (8-10) p = 0.040*
anatomy information
Hands on 8 (7-10) 8 (6-10) p=0904
Experience
US scanning Delivery of 10 (10-10) 10 (9-10) p = 0221
of volunteer information
Hands on 10 (9-10) 9 (5-10) p = 0.069
Experience
Tissue Delivery of 10 (10-10) 10 (9-10) p=0414
phantom Information
Hands on 10 (10-10) 9.5 (3-10) p=0114
Experience
*p<0.05.
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Additional file

Additional file 1: Task Specific Checklist and Global Rating Scale for
assessment Ultrasound Guided Axillary Brachial Plexus Block
performance.
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