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Abstract 

Background Machine-learning models may improve prediction of length of stay (LOS) and morbidity after surgery. 
However, few studies include fast-track programs, and most rely on administrative coding with limited follow-up 
and information on perioperative care. This study investigates potential benefits of a machine-learning model for pre-
diction of postoperative morbidity in fast-track total hip (THA) and knee arthroplasty (TKA).

Methods Cohort study in consecutive unselected primary THA/TKA between 2014–2017 from seven Danish centers 
with established fast-track protocols. Preoperative comorbidity and prescribed medication were recorded prospec-
tively and information on length of stay and readmissions was obtained through the Danish National Patient Registry 
and medical records. We used a machine-learning model (Boosted Decision Trees) based on boosted decision trees 
with 33 preoperative variables for predicting “medical” morbidity leading to LOS > 4 days or 90-days readmissions 
and compared to a logistical regression model based on the same variables. We also evaluated two parsimonious 
models, using the ten most important variables in the full machine-learning and logistic regression models. Data col-
lected between 2014–2016 (n:18,013) was used for model training and data from 2017 (n:3913) was used for testing.

Model performances were analyzed using precision, area under receiver operating (AUROC) and precision recall 
curves (AUPRC), as well as the Mathews Correlation Coefficient. Variable importance was analyzed using Shapley 
Additive Explanations values.

Results Using a threshold of 20% “risk-patients” (n:782), precision, AUROC and AUPRC were 13.6%, 76.3% and 15.5% 
vs. 12.4%, 74.7% and 15.6% for the machine-learning and logistic regression model, respectively. The parsimonious 
machine-learning model performed better than the full logistic regression model. Of the top ten variables, eight were 
shared between the machine-learning and logistic regression models, but with a considerable age-related variation 
in importance of specific types of medication.
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Conclusion A machine-learning model using preoperative characteristics and prescriptions slightly improved identi-
fication of patients in high-risk of “medical” complications after fast-track THA and TKA compared to a logistic regres-
sion model. Such algorithms could help find a manageable population of patients who may benefit most from inten-
sified perioperative care.

Keywords Machine learning, Risk assessment, Hip replacement, Knee replacement, Enhanced recovery after surgery, 
Perioperative care, Postoperative complications

Introduction
Prediction of postoperative morbidity and requirement 
for hospitalization is important for planning of health 
care resources. With regards to the common surgical 
procedures of primary total hip (THA) and knee arthro-
plasty (TKA), the introduction of enhanced recovery or 
fast-track programs has led to a significant reduction of 
postoperative length of stay (length of stay) as well as 
morbidity and mortality [1–3]. However, despite such 
progress, a fraction of patients still have postoperative 
complications leading to prolonged length of stay or 
readmissions [1, 3, 4]. Consequently, to prioritize perio-
perative care, many efforts have been published to pre-
operatively predict length of stay and morbidity using 
traditional risk factors such as age, preoperative cardio-
pulmonary disease, anemia, diabetes, frailty, etc. [4–8]. 
These efforts have been based on traditional statistical 
methods, most often multiple regression analyses, and 
essentially concluding that it is “better to be young and 
healthy than old and sick”. Consequently, despite being 
statistically significant, conventional risk-stratification 
based on such studies has had a relatively limited clini-
cally relevant ability to predict and reduce potentially 
preventable morbidity and length of stay [4–8].

More recently, machine-learning methods have been 
introduced with success in several areas of healthcare and 
where preliminary data suggest them to improve surgical 
risk prediction compared to traditional risk calculation in 
certain anesthetic and surgical conditions [9, 10]. This is 
also the case in THA, TKA and uni-compartmental knee 
replacement, where several publications on machine-
learning algorithms for prediction of length of stay [11, 
12] complications [13], disability [14], potential outpa-
tient setup [15], readmissions [16] or payment models 
[17], have shown promising predictive value compared to 
conventional statistical methods [18].

However, few papers have included fast-track pro-
grams, and most are based on large databases with the 
presence of risk factors and complications often relying 
on administrative coding with limited information on 
perioperative care, follow-up and discharge destination. 
In our previous study of 9512 THA and TKAs within 
a fully implemented fast-track protocol and including 
the above information, we did not find advantages of 

machine-learning methods compared to logistic regres-
sion in predicting a length of stay > 2 days [19]. However, 
this may have been due to data imbalance, lack of details 
on medication and the chosen outcome of length of stay 
of > 2  days which may not be directly related to preop-
erative patient characteristics [19]. Furthermore, medical 
complications resulting in prolonged admission or read-
missions may be more clinically relevant than focusing 
on length of stay when attempting to identify a relevant 
patient population for future perioperative interventions 
[20]. Especially within well-established fast-track proto-
cols where LOS is about 1 day [1]. Thus, the combination 
of modern evidence-based surgical fast-track protocols 
with machine-learning models remain promising as it 
may provide an improved and continually developing 
basis for identifying which patients may benefit from 
more extensive preoperative evaluation and postopera-
tive medical care.

Consequently, we used a large consecutive cohort of 
patients undergoing fast-track total hip and knee replace-
ment within a national public health-care system [1] to 
develop and test a new machine-learning model with 
an extended number of preoperative variables including 
information on dispensed reimbursed prescriptions [21], 
for preoperative prediction of “medical” complications 
with prolonged length of stay or readmissions.

Our hypothesis was that these changes with regards to 
preoperative information would make a machine-learn-
ing model perform better than logistic regression at pre-
dicting which patients would experience postoperative 
medical complications.

Methods
Study design and population
This study on preoperative prediction is done in accord-
ance with the Transparent reporting of multivariable 
prediction model for individual prognosis or diagnosis 
(TRIPOD) statement [22] and the Clinical AI Research 
(CAIR) checklist proposal [23]. The study is based on the 
Centre for Fast-track Hip and Knee Replacement data-
base which is a prospective database on preoperative 
patient characteristics and enrolling consecutive patients 
from 7 departments between 2010 and 2017. Only cases 
with surgery between 2014 and 2017 were used in the 
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present study to ensure the most up-to date data. The 
database is registered on ClinicalTrials.gov as a study 
registry (NCT01515670). Patients completed a preopera-
tive questionnaire with nurse assistance if needed. Addi-
tional information on reimbursed prescriptions 6 months 
prior to surgery was acquired using the Danish National 
Database of Reimbursed Prescriptions (DNDRP) which 
records all dispensed prescriptions with reimbursement 
in Denmark [21]. Finally, data were combined with the 
Danish National Patient Registry (DNPR) for informa-
tion on length of stay (counted as postoperative nights 
spent in hospital), 90-days readmissions with overnight 
stay and mortality. In case of length of stay > 4  days or 
readmission, patient discharge summaries were reviewed 
for information on postoperative morbidity and in case 
of insufficient information, the entire medical records 
were reviewed. Readmissions were only included if con-
sidered related to the surgical procedure, thus excluding 
planned procedures like cancer workouts, cataract sur-
gery, etc. Readmissions due to urinary tract infection or 
dizziness after day 30 were also considered unrelated to 
the surgical procedure. In case of postoperative mortality, 
the entire medical record including potential readmis-
sions, was reviewed to identify cause of death. Evalua-
tion of discharge and medical records was performed by 
PP supervised by CJ. In case of disagreement, records 
were conferred with HK. Subsequently, causes of length 
of stay > 4, readmissions or mortality were classified as 
“medical” when related to perioperative care (renal fail-
ure, falls, pain, thrombosis, anemia, venous thrombo-
embolism or infection etc.) and “surgical” if related to 
surgical technique (prosthetic infection, revision surgery, 
periprosthetic fracture, hip dislocation, etc.) [1]. In case 
of a length of stay 4–6  days with a standard discharge 
summary describing a successful postoperative course, 
it was assumed that no clinically relevant postoperative 
complications had occurred. If length of stay was > 6 days 
but with standard discharge summary, the entire medical 
record was evaluated to confirm that no relevant compli-
cations had occurred.

Perioperative management
All patients had elective unilateral total hip and knee 
replacement in dedicated arthroplasty departments with 
similar fast-track protocols, including multimodal opioid 
sparing analgesia with high-dose (125 mg) methylpredni-
solone, preference for spinal anesthesia, only in-hospital 
thromboprophylaxis when length of stay ≤ 5  days, early 
mobilization, functional discharge criteria and discharge 
to own home [1]. There are no selection criteria for the 
fast-track protocol as it is considered standard of care, 
but we excluded patients with previous major hip or knee 
surgery within 90-days of THA or TKA and THA due 

to severe congenital joint disorder or cancer (Additional 
file 1).

Outcomes

Primary outcome
The primary outcome was to develop a machine-learning 
model to predict the occurrence of “medical” complica-
tions resulting in a length of stay > 4  days or readmis-
sion and compare model performance with a traditional 
logistic regression model. We also investigated the per-
formance of parsimonious models including only the top 
ten variables from the full machine-learning and logistic 
regression model, respectively.

Secondary outcome
Secondarily we investigated the performance of the full 
and parsimonious machine-learning and logistic regres-
sion models when including cases with a length of 
stay > 4 days but no reported “medical” complications.

Statistical analysis
Data consisted of 33 input variables, of which 7 were con-
tinuous. All variables were collected prospectively, either 
through the patient completed questionnaire, through 
the DNDRP or a combination of both (Table  1). Ini-
tially we trimmed the dataset by removing 156 patients 
(1.7%) who were outliers with regards to weight (< 30 kg 
or > 250 kg) and height (< 100 cm or > 210 cm) or where 
these data were missing. To reduce the risk of overfitting 
and allow for unbiased evaluation of model performance, 
data was subsequently split into a training set consisting 
of 18,013 (82.2%) procedures from 2014–2016 and a test 
set of 3913 (17.8%) procedures from 2017, as is standard 
in modelling of data with a temporal component [24]. 
These sample sizes are larger than the proposed minima 
of 3656, when assuming the model will explain 20% of the 
variability as suggested by Riley et al. [25]. The data anal-
ysis, including sample size calculation, was performed 
in Python and is available online at https:// zenodo. org/ 
record/ 73302 68.

As reference model, we used logistic regression with 
missing values being handled by multiple imputations. 
All variables were then normalized to have zero mean 
and unit standard deviation by subtracting the original 
mean and dividing by the original standard deviation. 
In addition, we used boosted decision trees (LightGBM) 
[26] for the machine-learning models, as such meth-
ods work well with categorical data and missing values. 
We used cross entropy as the objective function for the 
machine-learning model.

The full machine-learning model was trained 
and hyperparameter optimized using the Optuna 

https://zenodo.org/record/7330268
https://zenodo.org/record/7330268
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Table 1 Patient demographics with and without the primary outcome (length of stay > 4 days or readmissions due to “medical” 
morbidity) in the combined test and training dataset

Preoperative characteristics n (%) unless otherwise specified training set (n:18,013) test set (n:3913)

Mean age (SD) 69.0 (62.0–75.0) 70.0 (62.0–76.0)

Mean number of reimbursed  prescriptionsa (SD) 2.0 (0.0–3.0) 2.0 (0.0–3.0)

Female gender 755 (64.0) 12,133 (58.2)

Hip arthroplasty 9918 (54.8) 2260 (57.8)

Mean weight in kg (SD) 80.5 (70.0–93.0) 81.0 (70.0–92.0)

Mean height in cm (SD) 170.0 (164.0–177.0) 170.0 (164.0–177.0)

Mean body mass index (SD) 27.5 (24.6–31.2) 27.5 (24.6–31.1)

Regular use of walking aid 552 (46.8) 4398 (21.5)

Missing 29 (2.5) 359 (1.7)

Living alone 5914 (32.9) 1381 (35.7)

With others 11,971 (66.5) 2469 (63.8)

Institution 116 (0.6) 21 (0.5)

Missing 12 (0.6) 42 (1.1)

Hemoglobin (SD) 8.6 (8.1–9.1) 8.6 (8.1–9.2)

Missing 291 (1.5) 55 (1.4)

 > 2 units of alcohol/day 1382 (7.7) 286 (7.4)

Missing 57 (0.8) 36 (0.9)

Active smoker 130 (11.0) 2751 (13.2)

Missing 11 (0.9) 141 (0.7)

Cardiac disease 2527 (14.0) 529 (13.7)

Missing 17 (0.6) 53 (1.4)

Hypercholesterolemia 5396 (29.9%) 1133 (29.3%)

Missing 83 (0.5) 44 (1.2)

Hypertension 9030 (51.4) 1849 (49.5)

Missing 546 (3.0) 179 (4.6)

Pulmonary disease 1668 (9.2) 355 (9.2)

Missing 63 (0.4) 38 (1.0)

Previous cerebral attack 1038 (5.8) 213 (5.6)

Missing 157 (1.3) 77 (2.0)

Previous VTE 1331 (7.5) 283 (7.4)

Missing 283 (1.6) 66 (1.7)

Malignancy (undefined) 1469 (8.1) 134 (3.4)

Previous radically treated malignancy 1752 (9.7) 440 (11.2)

Missing 136 (0.8) 40 (1.0)

Chronic kidney disease 266 (1.5) 57 (1.5)

Missing 276 (1.5) 50 (1.3)

Family member with VTE 2235 (14.1) 430 (12.5)

Missing 2189 (12.6) 479 (12.2)

Regular snoring 266 (22.5) 5522 (26.5)

Uncertain about snoring 208 (17.6) 3781 (18.1)

Missing 259 (21.9) 3309 (15.9)

Not feeling rested 7272 (42.4) 9340 (44.8)

Uncertain about being rested 48 (4.1) 809 (3.9)

Missing 105 (8.9) 1230 (5.9)

Psychiatric disorder 1464 (8.4) 282 (7.6)

Missing 580 (3.2) 182 (4.7)

Characteristic based on combination of questionnaire and DNDRP

Diabetes
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framework [27] with the Tree-structured Parzen Esti-
mator algorithm [28] to efficiently sample hyperpa-
rameters and with a median stopping rule to minimize 
optimization time. The models were trained on the 
training data and then used for making predictions on 
the unseen test data (Additional file 1). We did not use 
cross-validation in order not to assume a constant per-
formance over time. The model classification threshold 
was intentionally calibrated to include 20% of the total 
number of patients (positive predictive fraction of 20%). 
This number was chosen based on clinical assumption 
of available additional or rearranged resources in the 
Danish National Healthcare system. We also included 
results for positive predictive fractions of 25% and 30% 
to illustrate model performance under such circum-
stances. Furthermore, we trained two parsimonious 
models using machine-learning and logistic regression 
with only the 10 most important features. All men-
tioned models were calibrated using Platt’s method 
(Additional file  2) [29]. Calibrated risk score distribu-
tions can be found in Additional file 2. Finally, we con-
structed a model based on age alone (Age) to explore 
the added value of multiple variable prediction.

To investigate the importance of the included vari-
ables, we computed the SHapley Additive exPlanations 
(SHAP) values, which provide estimates on which vari-
ables contribute most to the risk score predictions [30, 
31]. Finally, we investigated a potential relation between 
reimbursed prescribed cardiac drugs, anticoagulants, 
psychotropics and pulmonary drugs and age. For evalu-
ating model performance, we computed the number of 
true positives (TP), false positives (FP), false negatives 
(FN), true negatives (TN), sensitivity (true positive 
rate = TP / (TP + FN)), precision (positive predictive 
value = TP / (TP + FP)). Since the data was quite imbal-
anced (about a 1:20 positive:negative ratio) we also 
computed the Matthews Correlation Coefficient (MCC) 
which is independent of class imbalance [32, 33]. The 
MCC ranges between -1 (the 100% wrong classifier), 
0 (the random classifier), and 1 (the perfect classifier). 

Finally, we computed the area under the receiver oper-
ating characteristic curve (AUROC) and the area under 
the precision recall curve (AUPRC). To evaluate the 
statistical difference between the classifiers, we applied 
a Bayesian metric comparison P(sensitivity) [34], which 
is the probability that a model will perform better than 
the machine-learning model relative to the sensitivity. 
Thus, for two equally performing models P(sensitivity) 
is ≈ 50%.

Results
Median age in the 3913 patients was 70  years (IQR 
62–76), 59% were female and 58% had THA (Table  1). 
Details on prescribed drug types are shown in Additional 
File 3. Median length of stay was 2 (IQR: 1–2) days with 
7.6% 90-days readmissions and the primary outcome 
occurring in 182 (4.7%) patients. When applying any 
model with a positive prediction fraction of 20% to the 
3913 patients, 782 qualified as “risk-patients”. The results 
are summarized in Fig. 1 and Table 2.

When considering risk scores from the full machine-
learning (Fig. 1a) and full logistic regression model lead-
ing to this risk-patient selection, 106 and 97 had the 
primary outcome, respectively. Correspondingly, the 
sensitivity and precision were 58.2% and 13.6% for the 
full machine-learning and 53.3% and 12.4% for the full 
logistic regression model, respectively. The full machine-
learning model was superior (Fig. 1b) on all parameters 
(except AUPRC) compared to any of the other models, 
although the differences were minor (Table 2). Thus, the 
likelihood that the full logistic regression model or the 
parsimonious ML model would actually be better than 
the full ML model were 17.2 and 26.4% respectively. In 
contrast, the likelihood that the parsimonious logis-
tic regression and the age-only model would be better 
that the full ML model were less than 5% (Table 2). The 
results were similar when using positive prediction frac-
tions of 25% and 30%, but with the sensitivity for the full 
machine-learning model increasing to 64.3% and 69.2% 
and precision decreasing to 12.0% and 10.7%, respectively 

SD standard deviation, VTE venous thromboembolic event, DNDRP Danish National Database of Reimbursed Prescriptions
a Antirheumatica, steroids, anticoagulants, cardiac, cholesterol lowering, respiratory and psychotropic drugs
b Reported diabetes but no registered prescriptions
c  ± oral antidiabetics

Table 1 (continued)

Preoperative characteristics n (%) unless otherwise specified training set (n:18,013) test set (n:3913)

Diet treated  diabetesb 251 (1.4) 52 (1.3)

Oral antidiabetics 1294 (7.2) 291 (7.5)

Insulin treated  diabetesc 405 (2.2) 68 (1.8)

Missing 68 (0.4) 36 (0.9)
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(Additional file  4). Despite age being the single most 
important variable, age alone had a significantly lower 
sensitivity at 47.8%.

When evaluating feature importance, we found a 
strong correlation between the full machine-learning and 
full logistic regression model, with age and use of walking 
aids being the most important variables in both (Fig. 2a). 
From the combined importance of variables outside the 
top ten, the machine-learning approach extracted more 
information with fewer variables than logistic regression 
(Fig. 1b).

For the full machine-learning model, there was a clear 
signal that increasing age, number of reimbursed pre-
scriptions, and presence of comorbidity, all contributed 
to an increased risk score. In contrast, a recent date of 
surgery and an increased hemoglobin level seemed to 
reduce the calculated risk (Fig.  2b). Individual analy-
sis of the SHAP interaction values for types of antico-
agulant prescriptions revealed that prescriptions on 
vitamin-K antagonists (VKA) or adenosine diphosphate 
(ADP) antagonists increased, while acetylic salicylic acid 

and direct oral anticoagulants (DOAC) reduced the risk 
score of the full machine-learning model, regardless of 
age (Fig.  3a). The SHAP analysis of prescribed cardiac 
drugs revealed that prescriptions on  Ca2+-antagonists 
and betablockers in combination with one or two other 
antihypertensives increased the risk-score, as did pre-
scriptions on nitrates, other antihypertensives and 
antiarrhythmics. For the remaining cardiac drugs, pre-
scriptions either reduced or had minor influence, and 
with limited relation with age (Fig. 3b). Preoperative psy-
chotropic prescriptions increased the risk-score except 
for antipsychotics (0.6%). For users of selective serotonin 
inhibitors there was a clear age-related distinction with 
the risk score being increased in elderly patients but 
decreased in those < 60  years (Fig.  3c). Finally, the risk 
score increased with prescriptions on inhalation steroid 
and β-blockers, and more accentuated in the younger 
patients (Fig. 3d). The results for our secondary outcome 
which included patients with a length of stay > 4 days, but 
no reported postoperative complications, were similar as 
for the primary outcome. In general, we found that the 

Fig. 1 a Distribution of full machine learning model risk scores for patients ± the primary outcome. The dashed line marks the classification 
threshold of 20% positive prediction fraction. b Receiver operating curves (ROC) for the full machine learning model (F-MLM), full logistic regression 
model (F-LRM), parsimonious machine learning model (P-MLM), parsimonious logistic regression model (P-LRM) and the age-only model (AM)

Table 2 Performance of the models with a predefined positive prediction fraction of 20% for primary outcome

TP true positives, FP false positives, FN false negatives, TN true negatives, MCC Matthews correlation coefficient, AUROC area under the operating receiver curve, AUPRC 
area under the precision recall curve P(sensitivity): probability that a model performs better than the full machine-learning model relative to sensitivity

Positive prediction fraction 20% TP/FP FN/TN Sensitivity/
Precision %

MCC % AUROC % AUPRC % Brier % P (sensitivity) %

Full machine-learning model 106 / 676 76 / 3055 58.2 / 13.6 21.1 76.3 15.5 4.19 -

Full logistic regression model 97 / 685 85 / 3046 53.3 / 12.4 18.4 74.7 15.6 4.32 17.2

Parsimonious machine-learning model 100 / 682 82 / 3049 54.9 / 12.8 19.3 75.9 17.3 4.34 26.4

Parsimonious logistic regression model 90 / 692 92 / 3039 49.5 / 11.5 16.3 73.8 15.8 4.33 4.86

Age-only model 87 / 676 95 / 3055 47.8 / 11.4 15.8 69.7 12.1 38.8 3.55
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full machine-learning model was slightly superior to the 
others, although the differences were less than for the 
primary outcome. (Additional files  5 and  6). While the 
ten most important variables for the full machine-learn-
ing model remained unchanged, familiar disposition for 
venous thromboembolism replaced gender as one of the 
top ten important variables in the full logistic regres-
sion model (Additional file  7). Furthermore, the SHAP 
analysis on specific prescribed drugs demonstrated that 
the machine-learning model found no benefits from 
information on prescriptions on respiratory drugs, why 
all SHAP values were zero. In addition, the reduced risk 
with acetylsalicylic acid and DOAC prescriptions, as well 
as the influence of practically all cardiac drugs except for 
nitrates, other antihypertensives and antiarrhythmics, 
was attenuated (Additional file 8).

Discussion
We found that using a machine-learning algorithm 
including all 33 available variables and a parsimoni-
ous machine-learning-algorithm encompassing only 
the 10 most important predictors improved predic-
tion of patients at increased risk of having a length of 
stay > 4  days or readmissions due to medical complica-
tions compared to traditional logistic regression models. 
Thus, despite similarities in weighting of predictor vari-
ables, using the full machine-learning model resulted in 
approximately 5% increase in correctly identified risk-
patients compared to the full logistic regression model. 
This corresponded to an increase in AUROC of about 
1.5, which is about 3 times larger than what was found in 
a study investigating potential benefits of machine-learn-
ing for the NSQIP risk calculator [35].

Fig. 2 a The overall importance of the 10 most important variables measured by the SHAP-values for the full machine-learning and full logistic 
regression models on the primary outcome (LOS > 4 days or readmission due to “medical” morbidity). Only the importance of prescribed 
anticholesterols and gender differ between the models. The contributions of the remaining variables are summed in the bottom bar. b The 
SHAP-values for the full machine-learning model on the primary outcome, where positive values increase and negative values decrease the risk 
score. Each dot represents a patient and the color is related to the value of the variable with blue being lowest and red highest

(See figure on next page.)
Fig. 3 SHAP scatter-plot on the contributions to the full machine-learning model on the primary outcome (LOS > 4 days or readmission due 
to “medical” morbidity), for individual types of prescribed anticoagulants, cardiac drugs, psychotropics and respiratory drugs stratified by age. 
a Prescribed anticoagulants VKA: vitamin K antagonists ASA: acetylsalicylic acid DOAC: direct oral anticoagulant ADP: Adenosine diphosphate 
ACE: angiotensin converting enzyme. b Prescribed cardiac drugs ACE: angiotensin converting enzyme AHT: antihypertensive. Other AHT were 
defined as AHT different from diuretics ANG-II/ACE inhibitors or  Ca2+antagonists. IHD: Ischemic heart disease. c Prescribed psychotropics SSRI: 
Selective serotonin inhibitor SNRI: Serotonin and norepinephrine reuptake inhibitor NaRI: Norepinephrine reuptake inhibitor NaSSA: Norepinephrine 
and specific serotonergic antidepressants. AD: antidepressants BZ: Benzodiazepines (likely underreported due to limited general reimbursement 
in Denmark). ADHD: Attention-deficit/hyperactivity disorder. d Prescribed respiratory drugs. SABA: Short-acting beta agonist LABA: long-acting beta 
agonist LAMA: Long-acting muscarinic antagonist
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In contrast, when also including patients having 
a length of stay > 4  days but without a well-defined 
complication as an outcome, the parsimonious 

machine-learning model was slightly worse than a tra-
ditional logistic regression model including all vari-
ables. Wei et al. used an artificial neural network model 

Fig. 3 (See legend on previous page.)
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to predict same-day discharge after TKA, based on the 
NSQUIP database from 2018 and found that six of the 
ten most important variables were the same compared 
with logistic regression, similar to our findings [36].

However, patients with one-day length of stay were 
intentionally excluded due to variations in in-patient 
vs. out-patient registration [36]. A previous systematic 
review found that machine-learning algorithms may pro-
vide better prediction of postoperative outcomes in THA 
and TKA [37]. The authors concluded that such models 
performed best at predicting postoperative complica-
tions, pain and patient reported outcomes and were less 
accurate at predicting readmissions and reoperations 
[37]. That machine-learning algorithms may improve pre-
diction of complications after THA and TKA compared 
to traditional logistic regression was also found by Shah 
et  al. who used an automated machine-learning frame-
work to predict selected major complications after THA 
[13]. However, theirs was a retrospective study based on 
diagnostic and administrative coding and the selected 
complications occurred only in 0.61% of patients, poten-
tially limiting clinical relevance. In contrast, we aimed 
at identifying a cohort which would comprise 20% of 
patients in which we found about 60% of all medical 
complications. This we believe, is within the means of 
the Danish socialized healthcare system to allocate addi-
tional resources for intensified perioperative care and 
with both patient-related and economic benefits due to 
potentially avoided complications and costs. In this con-
text, the models using 25% and 35% positive prediction 
thresholds demonstrated that the gain in sensitivity lead-
ing to identification of 14–24 more patients with compli-
cations was at the cost of 196 to 391 more patients being 
“wrongly” classified as risk patients. Age has traditionally 
been a major factor when predicting surgical outcomes 
and remained the single most important predictor in our 
study. However, although elderly patients had increased 
risk of postoperative complications, likely related to 
decline of physical reserves [38], the use of chronological 
age alone was inferior compared to both machine-learn-
ing and logistic regression models incorporating comor-
bidity and functional status. Thus, using age by itself for 
identifying the high-risk population resulted in missing 
18% of the “true risk-patients” (87 compared to 106 in the 
full ML model).

We used the SHAP values for estimation of the impact 
of the included variables. The SHAP values show which 
variables contribute most to the risk-score, thus provid-
ing a better understanding of the otherwise “black-box” 
machine-learning model. This approach was also used 
by Bonde and colleagues, who used deep neural net-
works to predict postoperative complications across sev-
eral different surgical procedures [10]. In our study, the 

SHAP analysis on unique Danish registry data on reim-
bursed prescriptions, unsurprisingly found a consider-
able increase in risk-score with an increasing number of 
prescriptions, especially in elderly patients However, this 
is a complex relationship where some patients benefit 
from their treatments, while other may suffer from unde-
sirable side-effects. Nevertheless, the information from 
the SHAP analysis in machine-learning studies may pro-
vide inspiration for new hypothesis-generating studies 
on risk-factors, e.g. on the potential differences in risk-
profile between having preoperative prescribed VKA and 
DOAKs found in our study. Also, the age-related differ-
ences in risk from SSRI’s could guide further studies on 
“deprescription”.

Another important requirement for machine-learning-
algorithms to be clinically useful is user friendliness and 
not depending on excessive additional data collection by 
the attending clinicians [9]. In this context, it was disap-
pointing that the parsimonious machine-learning algo-
rithm with only the ten most important variables was 
slightly worse at predicting the secondary outcome than 
the full logistic regression model. This could be due to 
a length of stay > 4  days but without described medical 
complications more often is related to social and logisti-
cal factors not contained within the ten most important 
patient-related preoperative variables, e.g., having a sup-
portive network, availability of homecare etc. Thus, the 
information gained by the combination of all available 
information may be of further importance when merely 
using LOS as outcomes in prediction studies. However, 
it also highlights the need for as much detailed, and 
preferably non-binary, data as possible to fulfill the true 
potential of machine-learning algorithms. In contrast 
to several other machine-learning studies, our dataset 
included only one paraclinical variable, which was pre-
operative hemoglobin. Although the inclusion of other 
laboratory tests such as albumin, sodium and alkaline 
phosphatase has been found to be of importance in 
some machine-learning algorithms [10, 39] they are not 
standard in fast-track protocols and not easy to interpret 
from a pathophysiological point of view. Also, most deci-
sions on intensified postoperative care in elective surgery 
will likely need to be conducted preoperatively, as there 
is an increasing need to prioritize limited health-care 
resources. Thus, although postoperative information 
such as duration of surgery, perioperative blood length of 
stays or postoperative hemoglobin have been included in 
other studies [39], we decided against the use of peri- and 
postoperative data. The same approach has been used by 
Ramkumar et al. who used U.S. National Inpatient Sam-
ple data including 15 preoperative variables, to predict 
length of stay, patient charges and disposition after both 
TKA and THA [17, 40]. However, these studies were not 



Page 10 of 12Michelsen et al. BMC Anesthesiology          (2023) 23:391 

conducted in a socialized health care system, and their 
main focus was on the need for differentiated payment 
bundles and without specific information on the reason 
for increased length of stay or non-home discharge [40].

Our study has some other limitations. First, one of 
the strengths of machine learning compared to logistic 
regression is the analysis of multilevel continuous data, 
whereas we included only a limited number of, often 
binary, preoperative variables. This could have limited 
the full realization of our machine-learning model. As 
previously mentioned, we excluded intraoperative infor-
mation, including type of anesthesia, surgical approach 
etc. all of which may influence postoperative outcomes. 
The observational design of this study means that we 
cannot exclude unmeasured confounding or confounding 
by indication. Also, despite that the DNDRP has a near 
complete registration of dispensed medicine in Den-
mark, some types or drugs, especially benzodiazepines, 
are exempt from general reimbursement and thus not 
sufficiently captured [21]. Furthermore, it is doubtful 
whether the patients used all types of drugs at the time 
of surgery (e.g. heparin which is rarely for long-term 
use). The classification of a complication being “medical” 
depended on review of the discharge records could also 
introduce bias. However, we believe our approach to be 
superior to depending only on diagnostic codes which 
often are inaccurate [41] and provide limited details on 
whether the complication may be attributed to a medi-
cal or surgical adverse event. The strengths of our study 
include the use of national registries with high degree of 
completion (> 99% of all somatic admissions in case of 
the DNDRP) [42], prospective recording of comorbidity, 
extensive information on prescription patterns 6 months 
prior to surgery. Finally, the similar established enhanced 
recovery protocols in all departments assured that all 
patients were treated according to the most modern 
evidence-based principles. Thus, our analysis is based on 
well-defined time-relevant clinical treatments.

In summary, our results suggest that machine-learning-
algorithms may provide slight, but clinically relevant, 
improved predictions for defining patients in high-risk 
of medical complications after fast-track THA and TKA 
compared to logistic regression models. Future studies 
could benefit from using such algorithms to find a man-
ageable population of patients who may benefit the most 
from intensified perioperative care.
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