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Abstract 

Background Sepsis is a life-threatening disease with a poor prognosis, and metabolic disorders play a crucial role 
in its development. This study aims to identify key metabolites that may be associated with the accurate diagnosis 
and prognosis of sepsis.

Methods Septic patients and healthy individuals were enrolled to investigate metabolic changes using non-targeted 
liquid chromatography-high-resolution mass spectrometry metabolomics. Machine learning algorithms were sub-
sequently employed to identify key differentially expressed metabolites (DEMs). Prognostic-related DEMs were then 
identified using univariate and multivariate Cox regression analyses. The septic rat model was established to verify 
the effect of phenylalanine metabolism-related gene MAOA on survival and mean arterial pressure after sepsis.

Results A total of 532 DEMs were identified between healthy control and septic patients using metabolomics. The 
main pathways affected by these DEMs were amino acid biosynthesis, phenylalanine metabolism, tyrosine metabo-
lism, glycine, serine and threonine metabolism, and arginine and proline metabolism. To identify sepsis diagnosis-
related biomarkers, support vector machine (SVM) and random forest (RF) algorithms were employed, leading 
to the identification of four biomarkers. Additionally, analysis of transcriptome data from sepsis patients in the GEO 
database revealed a significant up-regulation of the phenylalanine metabolism-related gene MAOA in sepsis. Further 
investigation showed that inhibition of MAOA using the inhibitor RS-8359 reduced phenylalanine levels and improved 
mean arterial pressure and survival rate in septic rats. Finally, using univariate and multivariate cox regression analysis, 
six DEMs were identified as prognostic markers for sepsis.

Conclusions This study employed metabolomics and machine learning algorithms to identify differential metabo-
lites that are associated with the diagnosis and prognosis of sepsis patients. Unraveling the relationship between met-
abolic characteristics and sepsis provides new insights into the underlying biological mechanisms, which could 
potentially assist in the diagnosis and treatment of sepsis.
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Trial registration This human study was approved by the Ethics Committee of the Research Institute of Surgery 
(2021–179) and was registered by the Chinese Clinical Trial Registry (Date: 09/12/2021, ChiCTR2200055772).
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Introduction
Sepsis is a significant public health concern characterized 
by a dysregulated host response to infection, resulting in 
life-threatening organ dysfunction [1]. The global burden 
of sepsis is increasing, with approximately 45 million new 
cases and 11 million deaths reported in 2017 [2]. Accu-
rate definition, diagnosis, and early recognition of sepsis 
are crucial for improving treatment effects of patients. 
In addition to the early diagnostic symptoms and signs, 
the identification of available biomarkers is essential 
for monitoring and treating sepsis. Several molecules, 
including lactic acid, c-reactive protein (CRP), procalci-
tonin (PCT), and B-type natriuretic peptide (BNP), have 
been proposed as candidate sepsis biomarkers. However, 
the number of useful predictive biomarkers for assessing 
the severity and prognosis of sepsis in clinical practice 
remains limited [3–5]. Therefore, it is urgent to find spe-
cific biomarkers for sepsis.

Metabolomics is a novel approach developed following 
genomics, transcriptomics, proteomics and lipidomics [6, 
7]. It involves the systematic identification and quantifi-
cation of a wide range of small molecule metabolites in 
biological samples. Since the research focus is on endog-
enous molecule compounds at the end of metabolic 
pathways, this approach directly reflects the body’s state, 
thereby offering a new means of identifying potential bio-
markers [8]. Metabolomics has been extensively applied 
to investigate the pathologic mechanism and biomarker 
of sepsis. Mickiewicz et  al. employed targeted metabo-
lomics based on nuclear magnetic resonance (NMR) to 
identify 186 metabolites in the serum of patients in the 
Intensive Care Unit, suggesting that metabolomics holds 
promise for predicting mortality in septic shock [9]. 
Another study found that two metabolites could distin-
guish severe sepsis from systemic inflammatory response 
syndrome [10]. Liquid chromatography and tandem mass 
spectrometry (LC–MS/MS) combines high performance 
liquid chromatography with electrospray ionization mass 
spectrometry (ESI–MS) metabolomics technology to 
achieve comprehensive detection of different types of 
metabolites in samples [11]. In comparison to targeted 
metabolomics using NMR, LC–MS/MS offers the advan-
tages of heightened sensitivity and a broader dynamic 
range [12].

Machine learning is a key area within the field of arti-
ficial intelligence [13, 14], representing an algorithmic 
framework that enables intelligent processing of data. 

Through feature extraction, machine learning continu-
ally enhances its performance by automatically learn-
ing internal data patterns. The main algorithms include 
artificial neural network (ANN), support vector machine 
(SVM), random forest (RF), and decision tree (DT) [15, 
16]. Utilizing machine learning opens up new possibili-
ties for enhancing diagnostic efficiency and achieving 
more objective and personalized patient assessments, 
deviating from traditional diagnostic and treatment 
methods [17]. Despite its increasing prominence in the 
diagnostic field, it is rarely used to identify potential diag-
nostic and prognostic goals for sepsis.

The present study employed liquid chromatography 
quadrupole time of flight mass spectrometry (LC-QTOF/
MS) to analyze the serum metabolites of sepsis patients. 
Machine learning techniques were then utilized to iden-
tify potential biomarkers for the diagnosis and prognosis 
of sepsis.

Materials and methods
Ethical review
This human study was approved by the Ethics Committee 
of the Research Institute of Surgery (2021–179) and was 
registered by the Chinese Clinical Trial Registry (Date: 
09/12/2021, ChiCTR2200055772). All the participants 
provided written informed consent before inclusion in 
this study. All experimental procedures were approved 
by the Animal Ethics Committee of Army Medical Uni-
versity, China, and were performed in accordance with 
the National Institutes of Health “Guidelines for the Care 
and Use of Laboratory Animals”. The study was carried 
out in compliance with the ARRIVE guidelines. All meth-
ods are reported in accordance with ARRIVE guidelines 
(https:// arriv eguid elines. org) for the reporting of animal 
experiments.

Study design and population recruitment
From December 2021 to April 2022, a total of 30 sep-
tic patients were recruited from the Intensive Care 
Unit (ICU) of Daping Hospital, Army Medical Univer-
sity, based on the Sepsis-3 criteria for sepsis and septic 
shock. Additionally, 15 age-matched healthy volunteers 
were enrolled from the State Key Laboratory of Trauma, 
Burns, and Combined Injury. The inclusion and exclusion 
criteria for septic patients are presented in Supplemen-
tary Table  1. Healthy participants also follow the simi-
lar inclusion and exclusion criteria. Blood samples were 

https://arriveguidelines.org
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collected from all septic patients within 24  h of admis-
sion, while blood samples from healthy volunteers were 
obtained during enrollment.

Blood sample collection and metabolites extraction
A 10  mL peripheral venous blood sample was collected 
from all participants in both groups. Subsequently, the 
samples were centrifuged at 3000  rpm for 10  min, and 
the resulting supernatant was aliquoted into 1.5 mL cen-
trifuge tubes and stored at -80 °C. For analysis, 100 μL of 
each sample was transferred to an EP tube. To this, 400 
μL of extract solution (methanol containing isotopically-
labelled internal standard mixture) was added, followed 
by 30 s of vortexing, 10 min of sonication in an ice-water 
bath, and 1 h of incubation at -40 °C to precipitate pro-
teins. The sample was then centrifuged at 12,000  rpm 
(RCF = 13,800(× g), R = 8.6  cm) for 15  min at 4  °C. The 
resulting supernatant was transferred to a fresh glass vial 
for analysis. A quality control (QC) sample was prepared 
by combining equal aliquots of the supernatants from all 
the individual samples.

LC–MS/MS analysis
LC–MS/MS analyses were conducted using a UHPLC 
system (Vanquish, Thermo Fisher Scientific) cou-
pled to an Orbitrap Exploris 120 mass spectrometer 
(Orbitrap MS, Thermo) with a UPLC HSS T3 column 
(2.1 mm × 100 mm, 1.8 μm). The mobile phase consisted 
of 5  mmol/L ammonium acetate and 5  mmol/L acetic 
acid in water (A) and acetonitrile (B). The auto-sampler 
temperature was maintained at 4  °C, and the injection 
volume was 2 μL. The Orbitrap Exploris 120 mass spec-
trometer was selected for its capability to acquire MS/
MS spectra in information-dependent acquisition (IDA) 
mode, controlled by Xcalibur software (Thermo). In 
this mode, the acquisition software continuously evalu-
ates the full scan MS spectrum. The ESI source condi-
tions were set as follows: sheath gas flow rate at 50 Arb, 
aux gas flow rate at 15 Arb, capillary temperature at 
320  °C, full MS resolution at 60,000, MS/MS resolution 
at 15,000, collision energy at 10/30/60 in NCE mode, and 
spray voltage at 3.8  kV (positive) or -3.4  kV (negative), 
respectively.

Data preprocessing and annotation
The raw data were converted to the mzXML format using 
ProteoWizard and processed with an in-house program 
developed in R. This program utilized XCMS for peak 
detection, extraction, alignment, and integration. Metab-
olite annotation was performed using an in-house MS2 
database called BiotreeDB, with a cutoff set at 0.3 for 
annotation.

Identification of differentially expressed metabolites via RF 
and SVM Algorithms
In this study, various machine learning algorithms were 
employed to identify differentially expressed metabo-
lites (DEMs). The random forest (RF) algorithm was 
utilized to determine the optimum DEMs between the 
sepsis and healthy control groups. Using the "e1071" 
R package, the support vector machine (SVM) gener-
ated eigenvectors were eliminated to extract the opti-
mal variables for identifying diagnostic DEMs in sepsis. 
Additionally, a SVM classifier was constructed with 
tenfold cross-validation. Finally, a Venn diagram was 
employed to identify the shared DEMs.

Dataset collection
A total of 18 genes related to phenylalanine metabolism 
were obtained from the Molecular Signatures Database 
(MSigDB) (https:// www. gsea- msigdb. org/ gsea/) for fur-
ther investigation. The mRNA expression matrix was 
downloaded from the Gene Expression Omnibus (GEO) 
dataset (https:// www. ncbi. nlm. nih. gov/ geo/). In this study, 
the GSE57065 dataset was utilized for screening differen-
tially expressed genes (DEGs). The R package "SVA" was 
employed to normalize the gene expression matrices and 
eliminate batch effects. Perl scripts were used to convert 
the dataset probes into corresponding gene symbols.

Sepsis model establishment
The ethics and protocols for the animal experiments were 
approved by the La-boratory Animal Welfare and Ethics 
Committee of the Army Medical University (Approval 
No. AMUWEC20224867). Adult male and female 
Sprague–Dawley rats weighing between 200-220  g were 
bred in a facility with filtered positive-pressure venti-
lation, under a 12:12-h dark/light cycle, with ad  libi-
tum access to food and water. The rats were randomly 
assigned to three groups: Control (n = 30), Sepsis (n = 30), 
and RS8359-treated Sepsis (n = 30). The RS8359 com-
pound (HY-14260, Med-ChemExpress) was administered 
at a dosage of 5 mg/kg, dissolved in ddH2O, through the 
tail vein 30 min prior to inducing sepsis in the RS8359-
treated group. The Sepsis group received an equiva-
lent volume of ddH2O. The rats were anesthetized with 
sodium pentobarbital (45  mg/kg, i.p.) for the surgical 
procedure. Cecal ligation and puncture (CLP) were con-
ducted to create the sepsis model following established 
protocols [8]. Myocardial tissues were harvested at 12 h 
after CLP and stored at − 80 °C until further processing.

Statistical analysis
All statistical analyses were conducted using R soft-
ware (version 4.1.2, http:// www.r- proje ct. org). The 
DEGs were identified using the "Limma" package with 
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a significance threshold of P < 0.05. Receiver operating 
characteristic (ROC) analysis was performed, and the 
area under the curve (AUC) was calculated to assess 
the predictive performance of the classifier.

Results
Clinical characteristics of the studied population
Our study included 30 septic patients and 15 healthy 
controls. The patients in the sepsis group had a mean age 
of 60.1 ± 14.5, while the control group had a mean age of 
50.4 ± 17.2 (p > 0.05). There were no significant differences 
in gender and BMI among the two groups (p > 0.05). 
However, we observed significant differences in tempera-
ture (p = 0.01), heart rate (p = 0.001), and white blood cell 
count (p = 0.003) when comparing septic patients to the 
healthy controls (Table 1).

Metabolic reprogramming related differentially expressed 
metabolites participated in the occurrence of sepsis
The ionization source of Orbitrap is electrospray ioni-
zation, including positive and negative ion modes 
(POS and NEG, respectively), which can increase the 
metabolite coverage and improve the detection effect. 
Subsequent data analysis involved separate analyses of 
the two groups. Principal component analysis (PCA) 
revealed significant differences in metabolites between 
sepsis patients (SP) and healthy controls (HC) (Fig. 1A, 
B). Further assessment using Orthogonal Partial Least 
Squares-Discriminant Analysis (OPLS-DA) demon-
strated the robustness of the original model without any 
overfitting observed (Fig. 1C, D). Metabolomics analysis 
detected a total of 532 differentially expressed metabo-
lites (DEMs) (VIP > 1, P < 0.05) between the sepsis and 

control groups, with 327 identified in the positive ion 
mode and 205 in the negative ion mode (Fig. 1G). The 
pie plots based on super class classification revealed 
that the DEMs primarily belonged to Lipids and lipid-
like molecules (37.69% in POS and 42.975% in NEG) 
and Organic acids and derivatives (11.294% in POS 
and 21.074% in NEG) (Fig.  1 E, F). Identified through 
radar plots, the top 10 DEMs with the highest fold 
change between sepsis patients and healthy controls 
in POS were (15a,20R)-Dihydroxypregn-4-en-3-one 
20-[glucosyl-(1- > 4)-6-acetyl-glucoside], Acar (14:1), 
N1-Methyl-2-pyridone-5-carboxamide, Kanzonol K, 
Ricinine, Zapotin, L-trans-4-Methyl-2-pyrrolidinecar-
boxylic acid, 2-Ethyl-4,5-dimethyloxazole, L-glycyl-
L-hydroxyproline, and Phosphoric acid. Meanwhile, 
in NEG, the top 10 DEMs were 16-Methylheptadeca-
noic acid, Eicosadienoic acid, Oleic acid, FA (18:1), FA 
(18:0), FA (19:0), FA (19:1), FA (17:0), FA (22:4), and FA 
(19:2) (Fig. 1H).

Figure  2A and B illustrate that the differentially 
expressed metabolites (DEMs) pathways primarily 
involved Phenylalanine metabolism, Pyruvate metabo-
lism, and Cysteine and methionine metabolism in the 
NEG model. On the other hand, in the POS model, the 
DEMs were enriched in Linoleic acid metabolism and 
Arginine and proline metabolism. To further assess the 
functional implications of these metabolites, we con-
ducted Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathway enrichment analysis. In the NEG 
model, the most significant KEGG pathways included 
biosynthesis of amino acids, phenylalanine metabo-
lism, cysteine and methionine metabolism, as well as 
glycine, serine, and threonine metabolism. Meanwhile, 

Table 1 Baseline characteristics of the septic patients and healthy controls in this study

Characteristics Septic patients Healthy controls p-Value
(n = 30) (n = 15)

Age, yrs Mean 60.1 50.4 0.053

SD 14.5 17.2

Gender, n (%) Female 10 (33.3) 6 (40.0) 0.660

Male 20 (66.7) 9 (60.0)

BMI, kg/m2 Mean 24.8 25.1 0.779

SD 3.2 4.3

Mean arterial Pressure, mmHg Mean 86.6 88.3 0.632

SD 11.8 9.2

Temperature, ℃ Mean 36.9 36.5 0.01

SD 0.5 0.3

White blood cell count, ×  109/L Mean 16.9 6.6 0.003

SD 12.2 3.1

Heart rate/min Mean 94.9 79.1 0.001

SD 15.3 8.3
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Fig. 1 Identification of differentially expressed metabolites (DEMs) between control and sepsis. A, B Principal component analysis (PCA) scores 
plot for metabolomics analysis in the sepsis and control groups. PC1 and PC2 in the figure represent the scores of the first and second principal 
components respectively. Each scatter represents a sample. The red circle represents septic patients, and the blue circle represents the healthy 
controls. C, D OPLS-DA replacement test of NEG and POS. The abscissa represents the displacement retention degree of the displacement test, 
the ordinate represents the value of  R2Y or  Q2, the green dot represents the  R2Y value obtained from the displacement test, the blue square dot 
represents the  Q2 value obtained from the displacement test, and the two dotted lines represent the regression lines of  R2Y and  Q2 respectively. 
Pie charts of super class of DEMs in NEG E and POS (F) models. (G) Heat maps and (H) Radar plots analyzed by TBtools showing the significantly 
changed metabolites in sepsis and control
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in the POS model, KEGG analysis revealed significant 
enrichment in pathways related to tyrosine metabo-
lism, arginine and proline metabolism, and linoleic 
acid metabolism (Fig. 2C, D). These findings indicate a 
close association between sepsis progression and met-
abolic reprogramming.

Identification of key DEMs in sepsis via various machine 
learning algorithms
We constructed a Random Forest (RF) model using mini-
mum error regression trees for screening differentially 
expressed metabolites (DEMs) (Fig.  3A). Through this 
approach, we identified 26 DEMs in both the NEG and 
POS models. Additionally, we established a support vector 
machine (SVM) for DEM selection (Fig. 3B). By comparing 

the results from RF and SVM, we determined 4 key DEMs 
(3,4-Dihydrocoumarin, Phenol, Benzaldehyde, and DL-
Phenylalanine) based on the intersection of these two 
methods (Fig.  3C). Furthermore, we conducted Pearson’s 
correlation analysis to examine the relationship between 
these key DEMs and conventional indicators, which is 
represented in the correlation thermogram (Fig.  3D). 
The analysis revealed positive correlations between the 
4 DEMs and high sensitivity cardiac troponin (hs-CTn), 
temperature, heart rate, high density lipoprotein (HDL), 
white blood count, aspartate aminotransferase/alanine 
aminotransferase (AST/ALT), and triglyceride (TG). Con-
versely, a negative correlation was observed between the 4 
DEMs and creatine, potassium  (K+), total cholesterol (TC), 
and B-type natriuretic peptide (BNP).

A NEG POS

NEG POS

B

C D

Fig. 2 Correlation and function enrichment analysis of DEMs. Pathway analysis of DEMs in (A) NEG and (B) POS models. Each square 
in the rectangular tree represents a metabolic pathway. The size of the square represents the impact degree of the pathway, and the color 
represents the P value. C, D Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of DEMs in NEG and POS. The vertical axis 
represents the names of the enriched KEGG metabolic pathways, and the horizontal axis represents the percentage of annotated metabolites 
in each pathway relative to the total number of metabolites
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The 4 DEMs were diagnostic biomarkers of sepsis
We further screened metabolites by ROC analysis and 
calculated the area under the curve (AUC). The results 
showed that the AUC of the 4 key DEMs analyzed 
by machine learning were both 1.0, which showed an 

excellent prediction ability for sepsis (Fig.  4A-D). The 
expressions of the 4 key DEMs (3,4-Dihydrocoumarin, 
Phenol, Benzaladehyde, and DL-Phenylalanine) were 
higher in the sepsis group than in the control group 
(Fig. 4E-H).

Fig. 3 Screening of DEMs via the comprehensive strategy. A DEMs screened by random forest (RF) algorithm. B Support vector machine (SVM) 
was applied for DEMs. C VENN diagram of hub DEMs. D Person’s correlation analysis between hub DEMs and routine detection indexes. *P < 0.05, 
**P < 0.01, ***P < 0.001



Page 8 of 13She et al. BMC Anesthesiology          (2023) 23:367 

The phenylalanine metabolism-related key gene MAOA 
played important role in sepsis
Due to the enrichment analysis of differential metabolites 
and machine learning screening showing the significant 
role of phenylalanine in the progression of sepsis, we fur-
ther investigated the role and regulatory mechanism of 
phenylalanine metabolism in sepsis. We analyzed tran-
scriptome data from the GEO database. This dataset 
included 25 blood samples from healthy controls and 82 
blood samples from septic patients. We identified differ-
entially expressed genes (DEGs) between the sepsis and 
healthy control groups using a threshold of |log2FC|> 1 
and p < 0.001. As depicted in Fig.  5A (volcano plot), 
Monoamine Oxidase A (MAOA), the sole phenylalanine 
metabolism-related gene, exhibited a significant increase 
post-sepsis. To demonstrate the impact of MAOA in sep-
sis, we employed a sepsis model in rats using CLP (cecal 
ligation and puncture) and observed the effect of MAOA 
inhibition through its antagonist, RS-8359. RS-8359 was 
administered through the tail vein at a dosage of 5  mg/
kg during sepsis induction. Firstly, we confirmed the 
inhibitory effect of RS-8359 on MAOA in myocardial tis-
sue via Western blot analysis (Fig. 5B, C). Subsequently, 
our study revealed that mean arterial pressure (MAP) 
decreased after CLP, while administration of RS-8359 
increased the MAP compared to the sepsis group 
(Fig. 5D). None of the septic rats survived beyond 24 h, 
with an average survival time of 7.25 ± 3.49 h. Conversely, 
in the RS-8359 group, 25% (4/16) of the rats survived 

for 24 h, with an average survival time of 13.16 ± 7.07 h, 
which was significantly longer than the sepsis group 
(Fig. 5E, F).

DEMs could indicate the prognosis for sepsis
In the study, we followed up with patients for 28  days 
from the diagnosis of sepsis in the ICU, the 28 days mor-
tality of septic patients was 36.7% (11/30), and the ICU 
mortality was 13.3% (4/30). Univariate Cox regression 
and multivariate Cox regression analysis were used to 
identify the prognostic related DEMs. After observing 
the survival outcome of septic patients within 28  days, 
DEMs associated with survival were identified by univar-
iate Cox regression analysis in NEG and POS (Tables  2 
and 3). Subsequently, a total 6 prognostic related DEMs, 
including FA (22:5) (HR = 2.98, p = 0.007), L-Threonic 
(HR = 0.16, p = 0.006), Cer/AS(d17:3/16:2) (HR = 2.38, 
p = 0.022), Diethylphosphate (HR = 8.78, p = 0.003), 
Hydroxycotinine (HR = 2.17, p = 0.009) and Syringol 
(HR = 0.17, P = 0.004) were identified by multivariate Cox 
regression analysis (Fig. 6A, B).

Discussion
In this study, metabolomics analysis identified a total of 
532 differentially expressed metabolites (DEMs). These 
DEMs were primarily involved in various metabolic 
pathways, including amino acid biosynthesis, phenyla-
lanine metabolism, tyrosine metabolism, glycine, ser-
ine, and threonine metabolism, as well as arginine and 

A B C D

E F G H

Fig. 4 Receiver operating characteristic curve (ROC) analysis of the 4 DEMs. ROC curve of (A) 3,4-Dihydrocoumarin, (B) Phenol, (C) Benzaladehyde, 
and (D) DL-Phenylalanine. The expression of (E) 3,4-Dihydrocoumarin, (F) Phenol, (G) Benzaladehyde, and (H) DL-Phenylalanine between sepsis 
and control groups
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Fig. 5 The role of MAOA in sepsis rats. A Volcano plot of differentially-expressed genes (DEGs) of GSE57065. Statistically significant DEGs were 
identified as those with a student’s t-test (|logFC|> 1, P < 0.001). B Representative Western blotting images and (C) quantification of Western blotting 
results of MAOA between the control group, the sepsis group and the RS-8359 group in heart tissues (n = 3 independent experiments). ***P < 0.001 
vs control, ###P < 0.001 vs sepsis. D The level of phenylalanine in heart tissues detected by the phenylalanine assay kit (ab241000, Abcam) (n = 6 
each group). ***P < 0.001 vs control, #P < 0.05 vs sepsis. (E) MAP within 6 h detecting starting at 12 h after CLP between the control group, the sepsis 
group and the RS-8359 group (n = 8 each group). ***P < 0.001 vs control, ###P < 0.001 vs sepsis. F The survival rate of rats between the control group, 
the sepsis group and the RS-8359 group (n = 16 each group). **P < 0.01 vs control, #P < 0.05 vs sepsis. G The survival time of rats in between the 
control group, the sepsis group and the RS-8359 group. **P < 0.01 vs control, #P < 0.05 vs sepsis
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proline metabolism. Machine learning algorithms SVM 
and RF were utilized to identify four metabolic biomark-
ers (3,4-Dihydrocoumarin, Phenol, Benzaladehyde, and 
DL-phenylalanine) that are associated with the diagnosis 
of sepsis. Additionally, an analysis of transcriptome data 
from sepsis patients in the GEO database revealed a sig-
nificant up-regulation of the phenylalanine-metabolism-
related gene MAOA in the sepsis group. Inhibition of 
MAOA with the inhibitor RS-8359 resulted in improved 
mean arterial pressure and survival rate in septic rats. 
Finally, univariate and multivariate Cox regression anal-
ysis identified six DEMs (FA (22:5), L-Thyronic, Cer/AS 
(d17:3/16:2), Diethylphophase, Hydroxyco-tinine, and 
Syringol) that are associated with the prognosis of sepsis.

Machine learning algorithms have played a crucial role 
in the mining of metabolomic data [18]. A lot of new bio-
markers can be found by analyzing metabolomics based 
on machine learning. Fortino et al. [19] utilized compre-
hensive transcriptome analysis coupled with machine 
learning to identify 89 biomarkers and decipher disease-
related characteristic genes. In another study, Bi-farin 
et al. [20] employed machine learning algorithms to ana-
lyze urine metabolomics of renal cell carcinoma (RCC) 
patients and successfully identified seven metabolites for 
the diagnosis of RCC, achieving an impressive AUC of 
up to 0.98. Similarly, in a study involving serum samples 
from 109 gout patients, 102 asymptomatic hyperuricemia 

patients, and 119 normal uric acid control groups, three 
machine learning algorithms (random forest, support 
vector machine, and logistic regression) were employed, 
leading to the identification of 13 metabolites as poten-
tial biomarkers to distinguish hyperuricemia, gout, and 
normal uric acid conditions [21]. Given the substantial 
amount of metabolomics information in sepsis, the use 
of intelligent algorithms to mine variables becomes cru-
cial. In this particular study, the SVM and RF algorithms 
were employed to screen for four distinctive DEMs in 
the serum of sepsis patients. Subsequently, the diag-
nostic efficacy of these four metabolites was evaluated 
using ROC curve analysis, ultimately identifying them as 
potential new markers for sepsis diagnosis.

Previous studies have shown that bacterial infection 
can lead to an imbalance of amino acid metabolism 
[22]. In sepsis patients, several metabolic characteris-
tics have been observed, including hypermetabolism, 
catabolism, negative nitrogen balance, muscle and vis-
ceral protein decomposition for energy, liver uptake 
of amino acids for gluconeogenesis, and significant 
metabolic changes in various amino acids [23]. Amino 
acid metabolism disorder has been found to play a 
vital role in sepsis progression. Chen et  al. conducted 
a non-targeted metabolomics analysis on serum sam-
ples from sepsis patients and identified extensive amino 
acid metabolism abnormalities. Notably, phenylalanine 

Table 2 Univariate Cox regression analysis of DEMs in NEG

variable coef HR (95%CI) wald.p value logtest.p value scoretest.p value

1,5-Anhydrosorbitol 0.6573 1.93 (1.083–3.438) 0.02574 0.04006 0.02025

Cer/AS (d17:3/16:2) 0.7347 2.085 (1.086–4.004) 0.02732 0.02391 0.02255

FA (22:5) 0.6023 1.826 (1.068–3.124) 0.0279 0.03729 0.02161

L-Threonic.acid -1.112 0.3288 (0.1178–0.9178) 0.03369 0.008543 0.01793

Syringic.acid 0.85 2.34 (1.053–5.201) 0.03701 0.01919 0.02848

LPI (18:2) 0.6436 1.903 (1.012–3.581) 0.04591 0.0495 0.03913

Pseudouridine -0.986 0.3731 (0.1401–0.9932) 0.04842 0.01554 0.02889

Table 3 Univariate Cox regression analysis of DEMs in POS

variable coef HR.95.CI wald.p value logtest.p value scoretest.p value

Hydroxycotinine 0.6298 1.877 (1.197–2.945) 0.00612 0.02619 0.0001932

N-Arachidonoyl.GABA -0.7594 0.4679 (0.2616–0.8372) 0.0105 0.01245 0.009885

3-Methylpyrrolo[1,2-a]pyrazine -0.6216 0.5371 (0.3162–0.9122) 0.02144 0.03489 0.01837

Diethylphosphate 0.8103 2.249 (1.101–4.593) 0.02616 0.02566 0.02738

Syringol -0.707 0.4931 (0.2583–0.9414) 0.0321 0.02855 0.02854

PE(3:0/22:5) 0.6309 1.879 (1.028–3.437) 0.04054 0.0434 0.03291

Isoferulic.acid.3-O-glucuronide -0.7971 0.4506 (0.2075–0.9785) 0.04391 0.02584 0.03046

Asparaginyl-Hydroxyproline -1.096 0.3342 (0.1125–0.9926) 0.04845 0.01329 0.03163
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and histidine metabolism exhibited the most signifi-
cant alterations in sepsis [24]. Aromatic amino acids 
(phenylalanine) can compete with branched-chain 
amino acids to penetrate the blood–brain barrier. The 
increase of aromatic amino acids causes the forma-
tion of pseudo-neurotransmitters, thus inhibiting the 
central nervous system [25]. Another study also indi-
cated the association between phenylalanine metabo-
lism and sepsis-related acute renal injury [26]. Amino 
acids like arginine and glycine possess antioxidant and 
immunomodulatory effects [27]. Glycine, in particu-
lar, can enhance myocardial function and diminish the 
production of free radicals, thereby mitigating endo-
toxin-induced myocardial damage [28]. Furthermore, 
by acting on the glycine receptor (GlyR) on cell mem-
branes, glycine can prevent the excessive activation of 
Kupffer cells and play a significant role in liver protec-
tion [29]. Thus, glycine serves as a crucial metabolic 
regulator in human cells. Citrulline also plays a vital 
role in cell metabolism and organ function regulation 
[30]. This study not only observed abnormal amino 

acid metabolism, including phenyl-alanine metabo-
lism, tyrosine metabolism, glycine, serine, and threo-
nine metabolism, and arginine and proline metabolism 
in sepsis patients, but also examined the expression of 
genes related to phenylalanine metabolism in the sep-
sis patient transcriptome and the protective effect of 
MAOA inhibitors on sepsis in rats.

This study utilized metabolomics, machine learning 
algorithms, and prognosis analysis to screen potential 
metabolic biomarkers associated with the diagnosis and 
prognosis of sepsis. Moreover, it specifically examined 
the alterations in phenylalanine metabolism following 
sepsis and subsequently analyzed the regulatory mecha-
nism of MAOA. However, since this study is considered 
exploratory and based on a small sample size of very new 
biomarkers, we opted to use completely healthy individ-
uals as the control group. This decision could potentially 
lead to an overestimation of the sensitivity and specific-
ity of the biomarkers. In future large sample studies, we 
will select case-controls as the control group to authenti-
cate the diagnostic efficacy of these biomarkers.

Fig. 6 Prognostic analysis of DEMs in sepsis. Multivariate Cox regression analysis of DEMs between septic patients and healthy controls in (A) NEG 
and (B) POS models
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Conclusions
The current study utilized metabolomics and machine 
learning algorithms to identify distinct metabolites 
associated with the diagnosis and prognosis of sepsis 
patients. Investigating the association between meta-
bolic characteristics and sepsis offers novel insights 
into the underlying biological mechanisms, which may 
potentially enhance the diagnosis and treatment of 
sepsis.
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