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Abstract 

Background Electronic health records (EHR) contain large volumes of unstructured free‑form text notes that richly 
describe a patient’s health and medical comorbidities. It is unclear if perioperative risk stratification can be performed 
directly from these notes without manual data extraction. We conduct a feasibility study using natural language 
processing (NLP) to predict the American Society of Anesthesiologists Physical Status Classification (ASA‑PS) as a sur‑
rogate measure for perioperative risk. We explore prediction performance using four different model types and com‑
pare the use of different note sections versus the whole note. We use Shapley values to explain model predictions 
and analyze disagreement between model and human anesthesiologist predictions.

Methods Single‑center retrospective cohort analysis of EHR notes from patients undergoing procedures with anes‑
thesia care spanning all procedural specialties during a 5 year period who were not assigned ASA VI and also had 
a preoperative evaluation note filed within 90 days prior to the procedure. NLP models were trained for each combi‑
nation of 4 models and 8 text snippets from notes. Model performance was compared using area under the receiver 
operating characteristic curve (AUROC) and area under the precision recall curve (AUPRC). Shapley values were used 
to explain model predictions. Error analysis and model explanation using Shapley values was conducted for the best 
performing model.

Results Final dataset includes 38,566 patients undergoing 61,503 procedures with anesthesia care. Prevalence 
of ASA‑PS was 8.81% for ASA I, 31.4% for ASA II, 43.25% for ASA III, and 16.54% for ASA IV‑V. The best performing mod‑
els were the BioClinicalBERT model on the truncated note task (macro‑average AUROC 0.845) and the fastText model 
on the full note task (macro‑average AUROC 0.865). Shapley values reveal human‑interpretable model predictions. 
Error analysis reveals that some original ASA‑PS assignments may be incorrect and the model is making a reasonable 
prediction in these cases.

Conclusions Text classification models can accurately predict a patient’s illness severity using only free‑form text 
descriptions of patients without any manual data extraction. They can be an additional patient safety tool in the peri‑
operative setting and reduce manual chart review for medical billing. Shapley feature attributions produce explana‑
tions that logically support model predictions and are understandable to clinicians.
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Background
Machine learning and natural language processing (NLP) 
techniques, coupled with adoption of electronic health 
records (EHR), and widespread availability of high-per-
formance computational resources offer new avenues for 
perioperative risk stratification whereby free-form text 
sources, such as medical notes, may be directly loaded 
into prediction models without the need to define, input 
or abstract predetermined data elements (e.g. diagno-
ses, medications, etc.). This offers the opportunity to 
use these techniques for preoperative assessment triage, 
flagging of critical/pertinent data in a voluminous elec-
tronic medical record, and a variety of other use cases 
based on clinician notes, which often contain narratives 
that richly and concisely describe a nuanced clinical pic-
ture of the patient while simultaneously prioritizing the 
clinician’s pertinent concerns. Unlike historical keyword-
based approaches, modern NLP techniques using large 
pretrained language models are able to account for inter-
word dependencies across the entire text sequence and 
have been shown to achieve state of the art performance 
on a variety of NLP tasks [1–4] including text classifica-
tion [5, 6]. However, it is unknown whether these tech-
niques can be successfully applied to perioperative risk 
stratification.

In this feasibility study, we hypothesize that NLP mod-
els can be applied to unstructured anesthesia preopera-
tive evaluation notes written by clinicians to predict the 
American Society of Anesthesiologists Physical Status 
(ASA-PS) score [7, 8]. These preoperative evaluation 
notes are a pertinent summary of the patient’s medi-
cal and surgical history and describe why the patient 
is having surgery, all of which reflect the patient’s pre-
anesthesia medical comorbidities that the ASA-PS aims 
to represent. In particular, we investigate four different 
text classification approaches that span the spectrum 
of historical and modern techniques: (1) random forest 
[9] with n-gram and term frequency-inverse document 
frequency (TFIDF) transform [10], (2) support vector 
machine [11] with n-gram and TFIDF transform, (3) fast-
Text [12, 13] word vector model, and (4) BioClinicalBERT 
deep neural network language model. We also investigate 
the impact of using the entire note versus specific note 
sections. We compare the model’s prediction against the 
ASA-PS assigned by the anesthesiologist on the day of 
surgery and assess catastrophic errors made by one of 
these models. Finally, we use Shapley values to visual-
ize which sections of note text were associated with the 

model’s predictions to explain these catastrophic errors. 
This approach shows that it is possible for clinicians to 
understand how complex NLP models are making their 
predictions, which is an important criteria for clinical 
adoption.

Methods
This retrospective study of routinely collected health 
records data was approved by the University of Washing-
ton Institutional Review Board with a waiver of consent. 
This study followed the Transparent Reporting of a Mul-
tivariable Prediction Model for Individual Prognosis or 
Diagnosis (TRIPOD) guideline [14] and other guidelines 
specific to machine learning projects [15–17]. Figure  1 
depicts a flow diagram of study design.

Study cohort
Inclusion criteria were patients who had a procedure 
with anesthesia at the University of Washington Medi-
cal Center or Harborview Medical Center from Janu-
ary 1, 2016 – March 29, 2021 where the patient also had 
an anesthesia preoperative evaluation note filed up to 
6 h after the anesthesia end time. This 6-h grace period 
reflects the reality that in some urgent or emergency situ-
ations or due to EHR behavior, text documentation may 
be time stamped out of order.

The anesthesia preoperative evaluation note must have 
contained the following sections: History of Present Ill-
ness (HPI), Past Medical and Surgical History (PMSH), 
Review of Systems (ROS), and Medications; notes miss-
ing at least one of these sections were excluded. No other 
note type was used. Cases must have had a recorded 
value for ASA-PS assigned by the anesthesiologist of 
record, a free-form text Procedure description, and a 
free-form text Diagnosis description; cases missing at 
least one of these values are excluded.

A unit of analysis is defined as a single case with an 
anesthesia preoperative evaluation note filed within 
90 days of the procedure. This unit was chosen because 
ASA-PS is typically recorded on a per-case basis by the 
anesthesiologist to reflect the patient’s pre-anesthesia 
medical comorbidities at the time of the procedure. 
Likewise, preoperative evaluation notes filed > 90  days 
before the case may not reflect the patient’s current 
state of health, so are excluded. Data was randomly 
split 70%-10%-20% into training, validation, and test 
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datasets respectively. Patients with multiple cases were 
randomized into a single data split to avoid information 
leakage between the three datasets. New case number 
identifiers were generated for this study and used to refer 
to each case.

Outcomes
The outcome variable is a modified ASA-PS with valid 
values of ASA I, ASA II, ASA III, ASA IV-V. ASA V cases 
are extremely rare, resulting in class imbalances that 
affect model training and performance. Thus ASA IV and 
V were combined into a compound class “IV-V”. ASA VI 
organ procurement cases are excluded. The final catego-
ries retain the spirit of the ASA-PS for perioperative risk 
stratification and resembles the original ASA-PS devised 
by Saklad in 1941 [7, 18]. The emergency surgery modi-
fier “E” was discarded.

Predictors and data preparation
Free-form text from the anesthesia preoperative evalu-
ation note is organized into many sections. Regular 
expressions are used to extract HPI, PMSH, ROS, and 
medications from the note. While diagnosis and proce-
dure sections exist within the note, they were less fre-
quently documented than in the procedural case booking 
data from the surgeon. Therefore, free-form text for these 
sections were taken from the case booking. Newline 

characters and whitespaces were removed from the text. 
Note section headers were excluded so that only the body 
of text from each section is included. We used text from 
each section to train models for ASA-PS prediction, 
resulting in 8 prediction tasks: Diagnosis, Procedure, 
HPI, PMSH, ROS, Medications (Meds), Note, Truncated 
Note (Note512). “Note” refers to using the whole note 
text as the predictor to train a model. When BioClini-
calBERT is applied to the “Note” task, the WordPiece 
tokenizer [19–21] truncates input text to 512 tokens. This 
truncation does not occur for other models. For equita-
ble comparison across models, we define the “Note512” 
task, which truncates the note text to the first 512 tokens 
used by the BioClinicalBERT model.

Statistical analysis and modeling
Four model architectures with different conceptual 
underpinnings were trained: (1) Random forest (RF) [9], 
(2) Support vector machine (SVM) [11], (3) fastText, [12, 
13], and (4) BioClinicalBERT [22]. Each model architec-
ture was trained on each of the 8 prediction tasks for a 
total of 32 final models.

Each model was trained on the training dataset. Model 
hyperparameters were tuned using Tune [23] with the 
BlendSearch [24, 25] algorithm to maximize Matthew’s 
Correlation Coefficient (MCC) computed on the valida-
tion dataset. The number of hyperparameter tuning trials 

Fig. 1 Flowchart of study design: dataset creation, model development, evaluation, and interpretation
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was selected to be 20 times the number of model hyper-
parameters with early stopping if the MCC of the last 3 
trials reaches a plateau with standard deviation < 0.001. 
The best model was then evaluated on the held-out test 
dataset. Details on the approach taken for each of the 
four model architectures is available in Supplemental 
methods.

Baseline models
Two baseline models were created for comparison: a ran-
dom classifier model and an age & medications classifier 
model. The random classifier model generates a random 
prediction without using any features, thus serving as a 
negative control baseline. The age & medications classi-
fier model serves as a simple clinical baseline model. It 
uses the patient’s age, medication list, and total medi-
cation count as input features to a multiclass logistic 

regression model with cross-entropy loss and L2 penalty 
for predicting the modified ASA-PS outcome variable. 
Defaults were used for all other model parameters. Both 
baselines were implemented using Scikit-learn.

Evaluation metrics
Final models were evaluated on the held-out test data-
set by computing both class-specific and class-aggregate 
performance metrics. Class-specific metrics include: 
receiver operator characteristic (ROC) curve, area under 
receiver operator curve (AUROC), precision-recall 
curve, area under precision-recall curve (AUPRC), pre-
cision (positive predictive value), recall (sensitivity), and 
F1. Class-aggregate performance metrics include MCC 
and AUCμ, [26] a multiclass generalization of the binary 
AUROC. Additionally, macro-average AUROC, AUPRC, 
precision, recall and F1 were also computed. Each metric 

Table 1 Dataset characteristics

Baseline patient, procedure, and note characteristics for Train, Validation, Test datasets

Train Validation Test

Patient Characteristics Patient Count, no. (% across dataset 
splits)

26994 (70.0%) 3858 (10.0%) 7714 (20.0%)

Number of Procedures per Patient, no. (% 
within dataset split)

1 19107 (70.78%) 2741 (71.05%) 5475 (70.97%)

2 4528 (16.77%) 608 (15.76%) 1330 (17.24%)

3 1635 (6.06%) 249 (6.45%) 425 (5.51%)

4 715 (2.65%) 124 (3.21%) 224 (2.9%)

>  = 5 1009 (3.74%) 136 (3.53%) 260 (3.37%)

Age, mean (SD) 50.59 (18.16) 51.51 (18.09) 50.66 (18.0)

Gender, no. (% within dataset split) Female 18419 (42.70%) 2534 (41.00%) 5130 (42.10%)

Male 24720 (57.30%) 3646 (59.00%) 7053 (57.89%)

Unknown 0 (0.0%) 0 (0.0%) 1 (0.01%)

Procedural Case Characteristics Case Count, no. (% across dataset splits) 43139 (70.14%) 6180 (10.05%) 12184 (19.81%)

Anesthesia Type, no. (% within dataset 
split)

General 34901 (81.07%) 4961 (80.51%) 9927 (81.64%)

MAC 7063 (16.41%) 1005 (16.31%) 1905 (15.67%)

Regional 1089 (2.53%) 196 (3.18%) 327 (2.69%)

ASA Physical Status Classification Score, 
no. (% within dataset split)

I 3734 (8.66%) 555 (8.98%) 1127 (9.25%)

II 13631 (31.6%) 1875 (30.34%) 3806 (31.24%)

III 18626 (43.18%) 2649 (42.86%) 5327 (43.72%)

IV-V 7148 (16.57%) 1101 (17.82%) 1924 (15.79%)

Time Between Pre-Anesthesia Note and 
Surgery, median days HH:MM:SS (IQR)

0 days 17:11:48
(0 days 00:17:00, 
4 days 06:04:05)

0 days 17:28:55
(0 days 00:18:00, 
4 days 05:04:10)

0 days 17:29:55
(0 days 00:17:05, 
4 days 01:52:53)

Note Characteristics Notes Count, no. (% across dataset splits) 32444 (70.11%) 4649 (10.05%) 9182 (19.84%)

Text Word-Level Length, median (IQR) Full Note 727 (514, 999) 723 (514, 1010) 722 (511, 997)

Procedure 5 (4, 8) 5 (4, 8) 5 (4, 8)

Diagnosis 3 (2, 5) 3 (2, 5) 3 (2, 5)

HPI 86 (35, 162) 87 (35, 161) 88 (35, 163)

PMSH 28 (18, 42) 28 (19, 44) 28 (18, 42)

ROS 87 (53, 154) 87 (54, 155) 87 (54, 153)

Medications 145 (59, 264) 143 (59, 264) 146 (57, 262)
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and model-task combination was computed with 1000 
bootstrap iterations each with 100,000 bootstrap samples 
on the test set. For each metric, p-values were computed 
for all 400 pairwise model-task comparisons with the 
Mann–Whitney U test followed by Benjamini–Hochberg 
procedure to control false discovery rate with α = 0.01.

Model interpretability and error analysis
4-by-4 contingency tables were generated to visualize the 
distribution of model errors. Catastrophic errors were 
defined as cases where the model predicts ASA IV-V but 
the anesthesiologist assigned ASA I, or vice versa. For 
catastrophic errors made by the BioClinicalBERT model 
with the Note512 task, three new anesthesiologist raters 
independently assigned an ASA-PS based on only the 
input text from the Note512 task. These new ASA-PS 
ratings were compared against the original anesthesiolo-
gist’s ASA-PS as well as the model prediction’s ASA-PS.

The SHAP [27] python package was used to train a 
Shapley values feature attribution model on the test 
dataset to understand which words support prediction 
of each modified ASA-PS outcome variable. An analysis 
of model errors with Shapley value feature attributions 
was reviewed for each of the catastrophic error examples 
with representative examples included in the manuscript. 
Shapley values for predicting each ASA-PS are visual-
ized as a heatmap over text examples. Text examples are 

de-identified by replacing ages, dates, names, locations, 
and entities with pseudonyms to achieve data obfusca-
tion while preserving structural similarity to the original 
passage.

Results
Our study comprised 38,566 patients undergoing 61,503 
procedures with anesthesia care with 46,275 notes. Base-
line patient, procedure, and note characteristics are 
described in Table 1. A flow diagram describing dataset 
creation is shown in Fig. 2. A total of 30 class-aggregate 
and class-specific metrics were computed; 400 pairwise 
comparisons exist for each metric resulting in 12,000 
pairwise comparisons. Only 20 of these pairwise com-
parisons are not statistically significant (Supplemental 
Tables 7 and 8). All comparisons across the same model 
type and varying the task, or across the same task and 
varying model are statistically significant for reported 
metrics.

AUROC for each model architecture and task is shown 
in Table 2; AUPRC is shown in Table 3; AUCµ and MCC 
is shown in Supplemental Table 1. RF, SVM, and fastText 
perform best using the entire note compared to note sec-
tions. Tasks with longer text snippets yielded better per-
formance–HPI, ROS and Meds sections result in better 
model performance as compared to Diagnosis, Proce-
dure, and PMSH. On the Note task, fastText performs 

Fig. 2 CONSORT Flow Diagram for Dataset Creation. If a patient has multiple procedural cases and pre‑anesthesia notes, all of a patient’s cases 
and notes are allocated to the same data split
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the best. On the Note512 task, BioCinicalBERT performs 
the best.

Direct comparison of models is most appropriate using 
the Note512 task since all models are given the same infor-
mation content. For the Note512 task, BioClinicalBERT 
has better class-aggregate performance across AUROC, 

AUPRC, AUCμ, MCC, F1 (Supplemental Table  2) com-
pared to other models. While F1 for both fastText and 
BioClinicalBERT are similar, fastText achieves this with 
higher macro-precision (positive predictive value) (Sup-
plemental Table  3) whereas BioClinicalBERT achieves 
this with higher macro-recall (sensitivity) (Supplemental 

Table 2 Area under receiver operator characteristic for all models

(A) Macro-average AUROC and (B) class-specific AUROC for each model architecture and task on the held-out test set compared to baseline models. Random Classifier 
serves as a negative control baseline. Age & Meds classifier serves as a simple clinical baseline. Supplemental Table 5 is a copy of this table with all standard errors 
reported

A. Macro-average AUROC
Baseline Diagnosis Procedure HPI PMSH ROS Meds Note Note512

Random Classifier 0.500 ‑‑‑ ‑‑‑ ‑‑‑ ‑‑‑ ‑‑‑ ‑‑‑ ‑‑‑ ‑‑‑

Age & Meds 0.709 ‑‑‑ ‑‑‑ ‑‑‑ ‑‑‑ ‑‑‑ ‑‑‑ ‑‑‑ ‑‑‑

Random Forest ‑‑‑ 0.741 0.751 0.788 0.695 0.778 0.781 0.820 0.802

Support Vector Machine ‑‑‑ 0.714 0.717 0.789 0.697 0.787 0.768 0.850 0.829

fastText ‑‑‑ 0.757 0.758 0.791 0.720 0.793 0.789 0.865 0.844

BioClinicalBERT ‑‑‑ 0.767 0.755 0.814 0.737 0.806 0.784 0.843 0.845

B. Class-specific AUROC
Baseline Diagnosis Procedure HPI PMSH ROS Meds Note Note512

Random Classifier
 I 0.500 ‑‑‑ ‑‑‑ ‑‑‑ ‑‑‑ ‑‑‑ ‑‑‑ ‑‑‑ ‑‑‑

 II 0.500 ‑‑‑ ‑‑‑ ‑‑‑ ‑‑‑ ‑‑‑ ‑‑‑ ‑‑‑ ‑‑‑

 III 0.500 ‑‑‑ ‑‑‑ ‑‑‑ ‑‑‑ ‑‑‑ ‑‑‑ ‑‑‑ ‑‑‑

 IV-V 0.500 ‑‑‑ ‑‑‑ ‑‑‑ ‑‑‑ ‑‑‑ ‑‑‑ ‑‑‑ ‑‑‑

Age & Meds
 I 0.863 ‑‑‑ ‑‑‑ ‑‑‑ ‑‑‑ ‑‑‑ ‑‑‑ ‑‑‑ ‑‑‑

 II 0.638 ‑‑‑ ‑‑‑ ‑‑‑ ‑‑‑ ‑‑‑ ‑‑‑ ‑‑‑ ‑‑‑

 III 0.668 ‑‑‑ ‑‑‑ ‑‑‑ ‑‑‑ ‑‑‑ ‑‑‑ ‑‑‑ ‑‑‑

 IV-V 0.668 ‑‑‑ ‑‑‑ ‑‑‑ ‑‑‑ ‑‑‑ ‑‑‑ ‑‑‑ ‑‑‑

Random Forest
 I ‑‑‑ 0.790 0.810 0.864 0.810 0.869 0.861 0.898 0.886

 II ‑‑‑ 0.708 0.713 0.744 0.636 0.729 0.738 0.783 0.759

 III ‑‑‑ 0.660 0.674 0.708 0.644 0.708 0.718 0.747 0.719

 IV-V ‑‑‑ 0.804 0.806 0.835 0.691 0.803 0.807 0.854 0.844

Support Vector Machine
 I ‑‑‑ 0.776 0.793 0.874 0.827 0.904 0.869 0.938 0.924

 II ‑‑‑ 0.653 0.633 0.738 0.592 0.691 0.680 0.806 0.775

 III ‑‑‑ 0.639 0.650 0.709 0.655 0.728 0.702 0.775 0.750

 IV-V ‑‑‑ 0.789 0.794 0.836 0.714 0.826 0.821 0.881 0.865

fastText
 I ‑‑‑ 0.815 0.820 0.870 0.833 0.889 0.863 0.943 0.930

 II ‑‑‑ 0.724 0.718 0.755 0.675 0.771 0.755 0.833 0.809

 III ‑‑‑ 0.684 0.685 0.720 0.668 0.729 0.724 0.798 0.771

 IV-V ‑‑‑ 0.805 0.811 0.819 0.702 0.782 0.815 0.884 0.867

BioClinicalBERT
 I ‑‑‑ 0.838 0.816 0.901 0.851 0.902 0.861 0.917 0.922

 II ‑‑‑ 0.711 0.707 0.768 0.674 0.748 0.737 0.806 0.804

 III ‑‑‑ 0.688 0.681 0.741 0.682 0.752 0.719 0.776 0.779

 IV-V ‑‑‑ 0.830 0.818 0.848 0.741 0.823 0.818 0.874 0.874
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Table 4). Class-specific metrics show that fastText’s worse 
recall is due to imbalanced recall performance with higher 
recall for ASA II and III which are the most prevalent 
classes, but poor recall for ASA I and IV-V. Conversely 
BioClinicalBERT has worse precision than fastText on 
all classes except for ASA III. BioClinicalBERT has simi-
lar or better AUROC and AUPRC across all the ASA-PS 

classes. This is also seen in the ROC curves (Fig. 3) and 
the precision-recall curves (Fig. 4), in which the BioClini-
calBERT model shows slightly better performance across 
most thresholds.

Figure 5 depicts 4-by-4 contingency tables to visualize 
distribution of model errors on the Note512 task. When 
erroneous predictions occur, they are typically adjacent 

Table 3 Area Under Precision‑Recall Curve

A) Macro-average AUPRC and (B) class-specific AUPRC for each model architecture and task on the held-out test set compared to baseline models. Random Classifier 
serves as a negative control baseline. Age & Meds classifier serves as a simple clinical baseline. Supplemental Table 6 is a copy of this table with all standard errors 
reported

A. Macro-average AUPRC
Baseline Diagnosis Procedure HPI PMSH ROS Meds Note Note512

Random Classifier 0.250 ‑‑‑ ‑‑‑ ‑‑‑ ‑‑‑ ‑‑‑ ‑‑‑ ‑‑‑ ‑‑‑

Age & Meds 0.416 ‑‑‑ ‑‑‑ ‑‑‑ ‑‑‑ ‑‑‑ ‑‑‑ ‑‑‑ ‑‑‑

Random Forest ‑‑‑ 0.457 0.462 0.510 0.392 0.484 0.489 0.567 0.534

Support Vector Machine ‑‑‑ 0.443 0.451 0.525 0.413 0.514 0.490 0.627 0.593

fastText ‑‑‑ 0.478 0.473 0.518 0.421 0.512 0.495 0.642 0.607

BioClinicalBERT ‑‑‑ 0.486 0.473 0.570 0.446 0.536 0.499 0.616 0.619

B. Class-specific AUPRC
Baseline Diagnosis Procedure HPI PMSH ROS Meds Note Note512

Random Classifier
 I 0.091 ‑‑‑ ‑‑‑ ‑‑‑ ‑‑‑ ‑‑‑ ‑‑‑ ‑‑‑ ‑‑‑

 II 0.316 ‑‑‑ ‑‑‑ ‑‑‑ ‑‑‑ ‑‑‑ ‑‑‑ ‑‑‑ ‑‑‑

 III 0.429 ‑‑‑ ‑‑‑ ‑‑‑ ‑‑‑ ‑‑‑ ‑‑‑ ‑‑‑ ‑‑‑

 IV-V 0.163 ‑‑‑ ‑‑‑ ‑‑‑ ‑‑‑ ‑‑‑ ‑‑‑ ‑‑‑ ‑‑‑

Age & Meds
 I 0.384 ‑‑‑ ‑‑‑ ‑‑‑ ‑‑‑ ‑‑‑ ‑‑‑ ‑‑‑ ‑‑‑

 II 0.425 ‑‑‑ ‑‑‑ ‑‑‑ ‑‑‑ ‑‑‑ ‑‑‑ ‑‑‑ ‑‑‑

 III 0.568 ‑‑‑ ‑‑‑ ‑‑‑ ‑‑‑ ‑‑‑ ‑‑‑ ‑‑‑ ‑‑‑

 IV-V 0.289 ‑‑‑ ‑‑‑ ‑‑‑ ‑‑‑ ‑‑‑ ‑‑‑ ‑‑‑ ‑‑‑

Random Forest
 I ‑‑‑ 0.285 0.285 0.394 0.295 0.374 0.327 0.488 0.455

 II ‑‑‑ 0.490 0.487 0.518 0.425 0.515 0.498 0.580 0.550

 III ‑‑‑ 0.565 0.576 0.614 0.551 0.610 0.621 0.650 0.625

 IV-V ‑‑‑ 0.488 0.500 0.514 0.299 0.437 0.510 0.550 0.508

Support Vector Machine
 I ‑‑‑ 0.272 0.305 0.436 0.323 0.433 0.345 0.606 0.575

 II ‑‑‑ 0.460 0.441 0.519 0.392 0.493 0.477 0.614 0.574

 III ‑‑‑ 0.568 0.567 0.618 0.570 0.639 0.618 0.684 0.655

 IV-V ‑‑‑ 0.473 0.492 0.527 0.367 0.491 0.519 0.605 0.568

fastText
 I ‑‑‑ 0.317 0.308 0.428 0.316 0.429 0.340 0.617 0.575

 II ‑‑‑ 0.507 0.491 0.531 0.453 0.559 0.517 0.645 0.605

 III ‑‑‑ 0.590 0.583 0.620 0.568 0.617 0.622 0.705 0.675

 IV-V ‑‑‑ 0.495 0.510 0.491 0.349 0.444 0.502 0.601 0.575

BioClinicalBERT
 I ‑‑‑ 0.330 0.301 0.529 0.354 0.445 0.337 0.582 0.591

 II ‑‑‑ 0.499 0.487 0.562 0.454 0.553 0.521 0.616 0.612

 III ‑‑‑ 0.599 0.585 0.641 0.588 0.655 0.628 0.679 0.690

 IV-V ‑‑‑ 0.517 0.519 0.546 0.388 0.492 0.509 0.588 0.585
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to the ASA-PS assigned by the original anesthesiolo-
gist. In the analysis of 40 catastrophic errors made by the 
BioClinicalBERT model on the Note512 task, the mean 
absolute difference between the model prediction and 
a new anesthesiologist rater is 1.025 whereas the differ-
ence from the original anesthesiologist is 3 (Fig. 6). This 
disparity with the original anesthesiologist and greater 
concordance with the new anesthesiologist rater indi-
cates that some of the “incorrect predictions” on the test 
set are not true failures of the model but issues with data 
quality documented in routine clinical care.

Shapley values in Fig.  7 provide clinically plausible 
explanations for model explanations, highlighting the 
directional probability of how specific input text contrib-
utes to predicting a specific ASA-PS. These feature attri-
butions often provide clinically plausible explanations for 

why a model is making a wrong prediction and allows the 
clinician to evaluate the evidence the model is consider-
ing. Additional examples shown in Supplemental Figs. 2, 
3, 4 and 5.

Discussion
In this study of ASA-PS prediction using NLP tech-
niques, we found that more advanced models made 
fewer categorization errors. Further, an assessment of 
catastrophic errors made by the BioClinicalBERT model 
suggests that, in the majority of cases, expert review sug-
gested the initial ASA-PS score assigned by the anesthe-
siologist was erroneous rather than the ASA-PS score 
assigned by the NLP model. Shapley value feature attri-
butions enable a clinician to easily identify if the model 
predictions are erroneous or clinically plausible. From 

Fig. 3 ROC performance of each model architecture on the Note512 task compared to baseline models. Each plot depicts model performance 
for predicting a specific ASA‑PS
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these feature attributions, we find NLP models are able 
to associate both obvious and subtle clinical cues to the 
patient’s illness severity.

Text classification techniques have undergone sub-
stantial evolution over the past decade. Most of these 
techniques will be unfamiliar to the practicing clini-
cian. In brief, RF and SVM represent more rudimentary 
approaches that utilize bag-of-words and n-grams. These 
techniques are sensitive to word misspellings, cannot 
easily account for word order, have difficulty in captur-
ing long-range references within sentences, and have dif-
ficulty in representing different meanings of a word when 
the same word appears in different contexts [28–33].

Modern NLP techniques have overcome many of these 
challenges with vector space representation of words [12, 
13, 34–36] and subword components [13, 19, 20, 37] as 
seen in the fastText model, attention mechanism [38, 

39], and pretrained deep autoregressive neural networks 
[40–42] such as transformer neural networks [43]. This 
has resulted in successful large language models such 
as BERT [21, 44] and the domain-specific BioClinical-
BERT [22]. Perhaps the most widely known large lan-
guage model is ChatGPT (OpenAI, San Francisco, CA), 
a general purpose chatbot based on the GPT-3 model 
which contains 175 billion parameters [45]. In contrast, 
BioClinicalBERT used in this feasibility study contains 
roughly 1500 times fewer parameters, but has been 
trained specifically on clinical notes which makes it well 
suited for the ASA-PS prediction task [46].

Longer text length provides more information for the 
model to make an accurate prediction. Even though text 
snippets such as Diagnosis or Procedure may have high 
relevance for the illness severity of the patient, the bet-
ter performance on longer input text sequences indicate 

Fig. 4 Precision‑recall curve performance of each model architecture on the Note512 task compared to baseline models. Each plot depicts model 
performance for predicting a specific ASA‑PS
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that more information is generally better. This is similar 
to what is observed in the multifaceted practice of clini-
cal medicine–where a patient’s overall clinical status is 
often better understood as the sum of many weaker but 
synergistic signals rather than a single descriptor. The 
limited input sequence length for BioClinicalBERT cre-
ates a performance ceiling as it limits the amount of 
information available to the model. Comparing Note and 
Note512 tasks, all other models that can utilize the full 

note have better performance when this input length is 
lifted with fastText being the top performer. These find-
ings suggest that future development of a large language 
model similar to BioClinicalBERT capable of accepting 
a longer input context would likely have superior per-
formance characteristics. fastText requires significantly 
less compute resources for model training and inference 
compared to BioClinicalBERT and remains a good option 
in lower resource settings. RF and SVM were our worst 

Fig. 5 4‑by‑4 contingency tables for each model architecture on the Note512 task. The vertical axis corresponds to modified ASA‑PS recorded 
in the anesthetic record by the anesthesiologist. The horizontal axis corresponds to the model predicted modified ASA‑PS. Numbers in the table 
represent case count from the test set. Percentages are case counts normalized over the model predicted ASA‑PS, representing the distribution 
of actual ASA‑PS recorded in the anesthetic record for a specific model predicted ASA‑PS. Cells outlined in red in the BioClinicalBERT contingency 
table correspond to our definition of catastrophic errors. The 21 cases where anesthesiologist assigned ASA I and BioClinicalBERT model predicted 
ASA IV‑V comprise 1.7% of all cases. The 19 cases where anesthesiologist assigned ASA IV‑V and BioClinicalBERT model predicted ASA I comprise 
1.6% of all cases
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performing models, confirming that modern word vector 
and neural network language model-based approaches 
are superior.

There is significant variability on the length and qual-
ity of clinical free-form text narrative written in the note, 
especially in the HPI section which is typically a clini-
cian’s narrative of the patient’s medical status and need 
for the procedure. In some cases, the HPI section con-
tains one or two words in length (Supplemental Fig.  4), 
whereas in other cases it is a rich narrative (Supplemental 
Figs. 2, 5). We believe that relatively poor performance in 
the ASA-PS prediction using HPI alone is a consequence 
of variability in documentation, as the model may have 

limited information for prediction if the note text does 
not richly capture the clinical scenario.

These models rarely made catastrophic errors. Erro-
neous predictions are typically adjacent to the ASA-PS 
assigned by the anesthesiologist, suggesting the model 
is making appropriate associations between freeform 
text predictors and the outcome variable (Fig.  5). Fur-
thermore, when new anesthesiologist raters were asked 
to assign ASA-PS to the cases where catastrophic 
errors occurred from the BioclinicalBERT model on the 
Note512 task, there was greater concordance between 
the model predictions and the new anesthesiologist 
rather than the original anesthesiologist (Fig. 6). Shapley 

Fig. 6 Rater assignments of ASA‑PS for catastrophic error examples from the BioClinicalBERT model on Note512 task. Top plot shows scenario 
where model prediction is ASA IV‑V, but original anesthesiologist assigned case ASA I. Bottom plot shows scenario where model prediction is ASA 
I, but original anesthesiologist assigned case ASA IV‑V. Three anesthesiologist raters were asked to read the input text from the Note512 task 
and assign an ASA‑PS for each of the catastrophic error examples. For each case, a dot marks a rater’s ASA‑PS assignment. The model’s prediction 
and original anesthesiologist ASA‑PS is shown as a highlighted region overlaid on the plots. Shapley feature attribution visualizations are shown 
for cases #57482 (Fig. 7, Supplemental Fig. 2), #41739 (Supplemental Fig. 3), #11950 (Supplemental Fig. 4), #29054 (Supplemental Fig. 5)
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feature attributions for one of these catastrophic errors in 
Fig.  7 reveal that the original anesthesiologist may have 
made the wrong assignment, or may have written a note 
that does not reflect the true clinical scenario. In this 
example, the original anesthesiologist assigned the case 
ASA IV-V, but the model predicted I. Feature attributions 
show the BioClinicalBERT model correctly identifies per-
tinent negatives on trauma exam, normal hematocrit of 
33, and normal Glasgow Coma Scale (GCS) of 15 to all 
support a prediction for ASA I and against ASA IV-V 
[47]. In this example, all new anesthesiologist raters agree 
with the model rather than the original anesthesiologist. 
These findings from our catastrophic error analysis sug-
gest that the model performance may be underestimated 
by our evaluation metrics, as our ground truth test set 
contains imperfect ASA-PS assignments. It also illus-
trates how the model is robust against potentially faulty 
labels. Despite a noisy training and evaluation set, NLP 
models are still able to make clinically appropriate ASA-
PS predictions.

Our exploration of Shapley feature attributions reveal 
that the model is able to identify indirect indicators of 
a patient’s illness severity. For example, subcutaneous 
heparin is often administered for bed-bound inpatients 
to prevent the development of deep vein thrombosis. 

Supplemental Fig. 4 depicts an example where the model 
learns to associate mention of subcutaneous heparin in 
the medication list with a higher ASA-PS, likely because 
hospitalized patients are generally more ill than outpa-
tients who present to the hospital for same-day surgery. 
Similarly, the model learns the association between the 
broad spectrum antibiotic ertapenem with a higher 
ASA-PS as compared to narrow spectrum or prophylac-
tic antibiotics such as metronidazole or cefazolin. These 
observations show that the model is able to identify and 
link these subtle indicators to a patient’s illness severity. 
Shapley value feature attributions prove to be an effective 
tool that enables clinicians to understand how a model 
makes its prediction from text predictors.

Limitations
Our dataset is derived from a real-world EHR used to 
provide clinical care and includes human and computer 
generated errors. These issues include data entry and 
spelling, the use of abbreviations, references to other 
notes and test results not available to the model, and 
automatically generated/inserted text as part of a note 
template. For this feasibility study we use the anesthesia 
preoperative evaluation note. This note is typically writ-
ten days or weeks in advance for elective procedures, but 

Fig. 7 Attribution of input text features to predicting modified ASA‑PS for the BioClinicalBERT model on Note512 task. Shapley values for each 
text token is shown to compare feature attributions to ASA I (top) and feature attributions to ASA IV‑V (bottom). Red tokens positively support 
predicting the target ASA‑PS whereas blue tokens do not support predicting the target ASA‑PS. The magnitude and direction of support is overlaid 
on a force plot above the text. The baseline probability of predicting each class in the test set is shown as the “base value” on the force plot. The 
base value + sum of Shapley values from each token corresponds to the probability of predicting the ASA‑PS and is shown as the bolded number. 
For simplicity, feature attributions to ASA II and III are omitted in this figure, but a full‑visualization with all outcome ASA‑PS for this text snippet 
is available in Supplemental Fig. 2. Text examples are de‑identified by replacing ages, dates, names, locations, and entities with pseudonyms 
to achieve data obfuscation while preserving structural similarity to the original passage
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is sometimes written immediately prior, during, or after 
the procedure in urgent or emergent scenarios. These 
notes are included because our goal is to study the fac-
tors that affect ASA-PS prediction using note text with 
NLP models. We have not conducted clinical validation 
of these models and we have not validated model perfor-
mance across multiple institutions.

The BioClinicalBERT model is limited to an input 
sequence of 512 tokens; future investigation is needed 
to understand if longer-context large language models 
can achieve better performance. We also did not explore 
more advanced NLP models such as those that perform 
entity and relation extraction, which may further enhance 
the prediction performance. Larger model sizes such as 
GPT-3 have been shown to be correlated with improved 
model performance across a variety of tasks, but these 
models are not specialized for the clinical domain; we 
do not explore these models in our feasibility study and 
leave this exploration to future research [48].

Finally, the ASA-PS is known to have only moderate 
interrater agreement among human anesthesiologists 
[49, 50]. Consequently, a perfect classification on this 
task is not possible since the ground truth labels derived 
from the EHR encapsulate this interrater variability.

Conclusions
Our feasibility assessment suggests that NLP models can 
accurately predict a patient’s illness severity using only 
free-form text descriptions of patients without any man-
ual data extraction. They can be automatically applied 
to entire panels of patients, potentially allowing partial 
automation of preoperative assessment triage while also 
serving as a measure of perioperative risk stratification. 
Clinical decision support tools could use techniques like 
these to improve identification of comorbidities, result-
ing in improved patient safety. These tools may also be 
used at the healthcare system level for population health 
analyses and for billing purposes. Predictions made by 
more advanced NLP models benefit from explainabil-
ity through Shapley feature attributions, which produce 
explanations that logically support model predictions and 
are understandable to clinicians. Future work includes 
assessment of more advanced natural language models 
that have more recently become available, use of non-
anesthesiologist clinician notes, and exploration of NLP-
based prediction of other outcome variables which may 
be less subject to interrater variability.
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obfuscation while preserving structural similarity to the original passage. 
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assist device (LVAD), heart failure, possible transplantation, tricuspid valve 
repair, and patent foramen ovale (PFO) closure; history of chronic cigarette 
smoking and snoring associated with ASA IV‑V. The text description is 
at least ASA III (severe systemic illness), and can be argued to be ASA IV 
(severe systemic disease with constant threat to life) if heart failure is pro‑
gressively worsening. In this example the model appears to make a more 
appropriate ASA‑PS prediction than the anesthesiologist. Text examples 
are de‑identified by replacing ages, dates, names, locations, and entities 
with pseudonyms to achieve data obfuscation while preserving structural 
similarity to the original passage. Supplemental Table 1. (A) Matthew’s 
correlation coefficient (MCC) and (B) AUCµ for each model architecture 
and task on the held‑out test set compared to baseline models. MCC 
is a categorical analog of Pearson’s correlation coefficient. AUCµ is a 
multiclass generalization of AUROC and U statistic and is more theoreti‑
cally grounded than macro‑average AUROC, but less commonly reported. 
Standard errors are reported in parenthesis. Supplemental Table 2. (A) 
Macro‑average F1 and (B) class specific F1 for each model architecture 
and task on the held‑out test set compared to baseline models. Standard 
errors are reported in parenthesis. Supplemental Table 3. (A) Macro‑aver‑
age precision and (B) class‑specific precision for each model architecture 
and task on the held‑out test set compared to baseline models. Standard 
errors are reported in parenthesis. Supplemental Table 4. (A) Macro‑aver‑
age recall and (B) class‑specific recall for each model architecture and task 
on the held‑out test set compared to baseline models. Standard errors 
are reported in parenthesis. Supplemental Table 5. (A) Macro‑average 
AUROC and (B) class‑specific AUROC for each model architecture and task 
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corrected for multiple hypothesis testing using the Benjamini‑Hochberg 
procedure with α =0.01.
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