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Abstract
Background Neurosurgical patients represent a high-risk population for postoperative pulmonary complications 
(PPCs). A lower intraoperative driving pressure (DP) is related to a reduction in postoperative pulmonary 
complications. We hypothesized that driving pressure-guided ventilation during supratentorial craniotomy might 
lead to a more homogeneous gas distribution in the lung postoperatively.

Methods This was a randomized trial conducted between June 2020 and July 2021 at Beijing Tiantan Hospital. Fifty-
three patients undergoing supratentorial craniotomy were randomly divided into the titration group or control group 
at a ratio of 1 to 1. The control group received 5 cmH2O PEEP, and the titration group received individualized PEEP 
targeting the lowest DP. The primary outcome was the global inhomogeneity index (GI) immediately after extubation 
obtained by electrical impedance tomography (EIT). The secondary outcomes were lung ultrasonography scores 
(LUSs), respiratory system compliance, the ratio of the partial pressure of arterial oxygen to the fraction of inspired 
oxygen (PaO2/FiO2) and PPCs within 3 days postoperatively.

Results Fifty-one patients were included in the analysis. The median (IQR [range]) DP in the titration group versus the 
control group was 10 (9–12 [7–13]) cmH2O vs. 11 (10–12 [7–13]) cmH2O, respectively (P = 0.040). The GI tract did not 
differ between groups immediately after extubation (P = 0.080). The LUSS was significantly lower in the titration group 
than in the control group immediately after tracheal extubation (1 [0–3] vs. 3 [1–6], P = 0.045). The compliance in the 
titration group was higher than that in the control group at 1 h after intubation (48 [42–54] vs. 41 [37–46] ml·cmH2O-1, 
P = 0.011) and at the end of surgery (46 [42–51] vs. 41 [37–44] ml·cmH2O-1, P = 0.029). The PaO2/FiO2 ratio was not 
significantly different between groups in terms of the ventilation protocol (P = 0.117). At the 3-day follow-up, no 
postoperative pulmonary complications occurred in either group.
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Introduction
In neurosurgery, due to the long-term use of general 
anesthesia and postoperative bed rest, the risk of postop-
erative atelectasis and pulmonary infection is increased 
[1]. Brain injury contributes to an inflammatory envi-
ronment, which makes the lung tissue more vulnerable 
to mechanical ventilation, surgery and other factors [2]. 
The incidence of postoperative pulmonary complications 
(PPCs) in neurosurgery is 4-25% [3–5]. The key to anes-
thesia management in supratentorial craniotomy is to 
avoid hypoxemia, poor cerebral perfusion and increased 
intracranial pressure (ICP). However, the commonly 
used protective ventilation strategy, which includes a 
recruitment maneuver and a higher positive end-expi-
ratory pressure (PEEP), increases ICP and reduces cere-
bral perfusion in patients undergoing craniotomy [1, 6]. 
Therefore, it is clinically important to determine how to 
balance the benefits and harms of mechanical ventilation 
to the lung and brain at the same time.

Optimization of the ventilation strategy can minimize 
iatrogenic injury in previously healthy lungs, reduc-
ing the incidence of PPCs [7]. More recent studies have 
suggested driving pressure (DP) as a viable target for 
lung-protective ventilation [7, 8]. DP is an interesting 
physiologic variable that has been associated with lung 
complications retrospectively in patients with lung injury 
or acute respiratory distress syndrome (ARDS) [9, 10]. A 
meta-analysis included data from 17 randomized con-
trolled trials, including 2250 patients, and compared low 
with high PEEP during ventilation with different tidal 
volumes (TVs). The study found that the setting of TV 
and PEEP aimed at reducing DP in mechanical ventila-
tion can reduce PPCs [10]. Furthermore, even in patients 
with healthy lungs, it is assumed that high DP is associ-
ated with increased morbidity [10, 11]. Therefore, “lowest 
DP”-based ventilation has been proposed as a new direc-
tion. However, no trials have evaluated the role of DP in 
early pulmonary ventilation distribution after supraten-
torial craniotomy.

Electrical impedance tomography (EIT) has been used 
as a noninvasive, radiation-free, bedside technique for 
assessing the regional distribution of pulmonary ven-
tilation and perfusion and has a good correlation with 
computed tomography (CT) and X-ray [12]. Lung ultra-
sonography (LUS) has been used in adults to evaluate 

lung aeration and oxygenation and to detect atelecta-
sis caused by anesthesia, with higher LUS scores (LUSs) 
indicating worse lung aeration [13, 14].

Considering the feasibility and usefulness of these 
methods, we investigated whether the lowest DP could 
contribute to the postoperative homogeneous aeration 
using EIT and LUS.

Materials and methods
Study design
This was a single-center, randomized, parallel group, 
patient and outcome assessor-blinded trial exploring 
a ventilation strategy targeting DP during supratento-
rial craniotomy conducted between June 21, 2020, and 
July 1, 2021, at Beijing Tiantan Hospital, Capital Medical 
University. The study adhered to the Consolidated Stan-
dards of Reporting Trials (CONSORT) guidelines. The 
study was approved by the Ethics Committee of China 
(ChiECRCT20200137) on June 12, 2020, and registered 
at ClinicalTrials.gov (NCT04421976). Participants were 
included after obtaining written informed consent.

Study population
Participants were recruited if they met the following cri-
teria: Glasgow Coma Scale score of more than 8 points, 
age between 18 and 70 years, American Society of Anes-
thesiologists (ASA) level ≥ II, mechanical ventilation 
duration ≥ 2  h, and elective supratentorial craniotomy. 
Patients were excluded if they met at least one of the fol-
lowing criteria: preexisting severe respiratory disease 
(chronic lung disease, pneumonia, acute lung injury or 
acute respiratory distress syndrome) or heart disease, 
dysphagia resulting from preoperative cranial nerve 
damage, body mass index (BMI) ≥ 35 kg ⋅ m− 2, mechani-
cal ventilation > 1 h within 2 weeks before the operation, 
progressive neuromuscular disease, pregnancy and any 
contraindication to EIT or LUS scan.

Randomization and blinding
Randomization was conducted using computer-gen-
erated random numbers sealed in opaque envelopes. 
Patients were randomly allocated into two groups by the 
corresponding envelope. Knowing the group task, the 
anesthesiologist was responsible for the intervention, and 
the other researchers, blinded to the random allocation, 

Conclusions Driving pressure-guided ventilation during supratentorial craniotomy did not contribute to 
postoperative homogeneous aeration, but it may lead to improved respiratory compliance and lower lung 
ultrasonography scores.

Clinical trial registration ClinicalTrials.gov NCT04421976.

Keywords Supratentorial craniotomy, Postoperative pulmonary complications, Global inhomogeneity index, Driving 
pressure, Electrical impedance
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participated in the follow-up visit and data analysis. 
Chest EIT and lung ultrasonography were performed by 
the relevant technicians and analyzed by a researcher.

Anesthesia
Smokers had quit smoking more than four weeks before 
surgery. For intravenous induction, sufentanil (0.2–0.3 µg 
⋅ kg− 1), propofol (2–2.5  mg ⋅ kg− 1), and rocuronium 
(0.6  mg ⋅ kg− 1) were used. Anesthesia was maintained 
with sevoflurane (0.4–0.5 MAC), remifentanil (0.05–
0.2 µg ⋅ kg− 1 ⋅ min− 1), propofol (3–4 mg ⋅ kg− 1 ⋅ h− 1) and 
rocuronium (0.2 mg ⋅ kg− 1, per 50–60 min). Routine peri-
operative monitoring included invasive blood pressure 
and the bispectral index (BIS). Mean arterial pressure 
(MAP) was maintained at > 70 mmHg. Neuromuscular 
blockade was reversed with neostigmine 0.04  mg·kg-1 
and atropine 0.02 mg·kg− 1 when the train-of-four (TOF) 
ratio was below 0.9. Extubation was performed when 
patients recovered consciousness and demonstrated suf-
ficient spontaneous breathing. All patients were trans-
ferred to the postanesthesia care unit (PACU) after 
successful extubation and monitored for at least 1  h 
in the PACU. Supplemental oxygen was administered 
at 3  L·min− 1 via a face mask. Postoperative pain was 
assessed at 20  min postoperatively by using the visual 
analog scale (VAS).

Ventilation protocol
Volume-controlled mechanical ventilation was provided 
(Datex Ohmeda S/5 Advance, General Electric Health-
care, Helsinki, Finland). All patients were preoxygen-
ated with a 0.8 FiO2 before tracheal intubation for 3 min. 
After intubation, the initial settings were TV 8 ml ⋅ kg-1 
of predicted body weight (PBW), fresh gas 2  L·min-1, 
FiO2 0.4 or higher if the SpO2 < 92%, inspiratory to expi-
ratory ratio 1:2, and a respiratory rate (RR) adjusted 
according to normocapnia (PaCO2 between 35 and 45 
mmHg). Mechanical ventilation parameters, such as pla-
teau pressure (Pplat), peak pressure (Ppeak) and compli-
ance, were acquired from the anesthetic machine. In the 
control group, PEEP was set at 5 cmH2O until respira-
tory restoration [15]. In our study, the ventilation strat-
egy with a fixed PEEP of 5 cmH2O was applied safely to 
patients with brain tumors [15]. The retrospective study 
showed that the application of PEEP had no effect on 
either ICP or cerebral perfusion pressure (CPP) for those 
without severe lung injury. We adopted the titration of 
PEEP strategy similar to the literature [16]. In the titra-
tion group, the PEEP value was increased stepwise by 1 
cmH2O from 2 cmH2O to 10 cmH2O after the patient 
was placed in position, with TV and RR unchanged. 
Each level was maintained for 10 breathing cycles, with 
DP in the last cycle recorded. Then, the level produc-
ing the lowest DP was identified as “optimal”, and the 

individual PEEP was maintained throughout mechanical 
ventilation. The Pplat should not exceed 30 cmH2O in 
each group; otherwise, the titration would be terminated 
in advance.

Measurements
The dynamic changes in aeration distribution can be 
visualized and evaluated by EIT [17]. The global inho-
mogeneity index (GI) is a measure that describes the 
regional ventilation distribution and homogeneity [18]. 
A lower GI implies more ventilation homogeneity in the 
lung [18, 19]. In the present study, EIT measurements 
were performed at three specific time points (PulmoVista 
500, Draeger Medical, Lübeck, Germany): preinduction, 
immediately after extubation and 1  h after extubation. 
An oblique belt with 16 electrodes was placed between 
the 5th and 6th intercostal spaces, and the data were 
recorded after the main cable was linked. Data for 5 min 
at each time point were recorded, and the belt position 
on the patient’s skin was marked. GI [20] was calculated 
offline using customized software to evaluate the distri-
bution of ventilation.

LUS can be used as a fast and easily available bedside 
test to evaluate lung areation. A-lines are a single line 
or multiple lines parallel to the pleural line and occur in 
normal lungs [14, 21]. B-lines are defined as hyperechoic 
vertical artifacts that originate from the pleural line, 
reach the bottom of the screen without fading and move 
synchronously with lung sliding [22]. Sets of at least three 
hyperechoic B-lines arising from the pleural line in one 
intercostal space are indicative of interstitial lung syn-
drome [23]. Each hemithorax was divided into six quad-
rants using two longitudinal lines (anterior and posterior 
axillary) and one axial line at the level of the nipples. 
Each quadrant was assigned a score of 0 to 3 according 
to a modified grading system: 0, normal lung with slid-
ing pleura and A-lines; 1, three or more scattered B-lines; 
2, coalescent B-lines; and 3, consolidated lung. The LUSs 
(0–36) were then calculated by summing the 12 individ-
ual quadrant scores, with higher scores indicating more 
severe aeration loss [24, 25]. A complete ultrasound 
examination using an ultrasound machine (Sonosite 
M-Turbo, Sonosite, USA) and a 6–13 MHz linear trans-
ducer array (L25) required an average duration of 10 min. 
The lung ultrasonic measurement time was consistent 
with the EIT. LUS was performed by trained anesthesi-
ologists (Fei L and Wei Z, with 1 year and 3 years of expe-
rience in LUS, respectively).

To evaluate gas exchange, arterial blood gas was tested 
(ABL 800, Radiometer, Copenhagen, Denmark), and pH 
and PaO2 were recorded.

Brain relaxation was evaluated by a neurosurgeon after 
craniotomy and before cutting the dura mater [26]. It 
was assigned a score from 1 to 4 points: scores of 1 and 
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2 points were considered soft/adequate/no swelling/
moderate swelling and good, and scores of 3 and 4 points 
were considered tight and pronounced swelling and bad.

Pulmonary complications within 3 days after the opera-
tion were evaluated by the Melbourne Group Scale Ver-
sion 2 (MGS-2) [27]. PPCs were diagnosed if four or 
more factors were present.

Outcomes
The primary outcome was the GI value immediately after 
extubation. The secondary outcomes were LUSs, respi-
ratory system compliance, PaO2/FiO2 ratio and PPCs 
within 3 days postoperatively.

Sample size calculation
The sample size was estimated for a previous study. A dif-
ference of 0.1 in GI between groups according to a previ-
ous study was detected [20], with an alpha level of 0.05 
and an SD of 10% using the independent t test at 90% 
power. Considering a dropout rate of 5%, 24 participants 
were needed per group.

Statistical analysis
Categorical variables are reported as the number (pro-
portion) of patients, normally distributed data are pre-
sented as the mean and standard deviation (SD), and 
nonnormally distributed data are presented as the 
median (IQR [range]). The Kolmogorov–Smirnov test 

was used to assess the normality of the distribution. For 
baseline characteristics between groups, the standardized 
mean difference(SMD) with 95% confidence intervals 
(95% CIs) was calculated. Two-tailed unpaired Student’s 
t test was conducted to compare continuous variables 
between two groups. The Mann–Whitney U test was 
conducted to assess the differences between groups for 
nonnormally distributed data (age, BMI, ventilation dura-
tion, intraoperative fluid input, intraoperative bleeding 
and intraoperative urine). The chi-square test or Fisher’s 
exact test was used to compare two or more proportions 
(PPC with 3 days). Two-way ANOVA was conducted to 
evaluate the effects of group, time, and the interaction 
on GI, LUSs, respiratory mechanics, PaO2/FiO2 ratio and 
hemodynamic variables. Because of the repeated mea-
surement, the Holm–Bonferroni method was used to 
adjust the P value for outcomes. Data analysis was per-
formed using GraphPad Prism 8.0 (GraphPad software, 
USA). P less than 0.05 was considered to indicate a sig-
nificant difference.

Results
Of 57 patients assessed for eligibility, 4 patients did not 
meet the inclusion criteria, so 53 patients were random-
ized into two groups and received the intended interven-
tions. One patient was excluded because he returned to 
the intensive care unit (ICU) with a tracheal tube after 
the operation in the titration group, and 1 patient was 
excluded due to technique problems in EIT in the con-
trol group. Finally, 51 patients were enrolled in the analy-
ses (Fig. 1). There were two patients with coronary heart 
disease in the control group but no clinical symptoms. 
(Table 1).

DP in the titration group was significantly lower than 
in the control group, with a median (IQR [range]) of 10 
(9–12 [7–13]) cmH2O vs. 11 (10–12 [7–13]) cmH2O 
(P = 0.040), respectively, corresponding to an optimal 
PEEP level of 3 (2–4 [2–7]) cmH2O in the titration group.

The GI in the titration group showed a tendency to 
fall immediately after extubation compared with base-
line but did not differ between different time points. The 
differences between the two groups were not significant 
(P = 0.080) immediately after extubation. The GI returned 
to baseline 1  h after tracheal intubation in both groups 
(Fig. 2A).

In both groups, there was an increase in the LUSs 
immediately after extubation and 1  h after extubation 
(P < 0.001 for the control group and P < 0.05 for the titra-
tion group), implying a significant loss of aeration in the 
lung after supratentorial craniotomy. Furthermore, the 
values were obviously higher in the control group than in 
the titration group immediately after extubation (1 [0–3] 
vs. 3 [1–6], P = 0.045), suggesting that DP-titrated ven-
tilation prevents aeration loss (Fig.  2B). Representative 

Fig. 1 Flow diagram of patients undergoing elective supratentorial crani-
otomy. BMI, body mass index; PEEP, positive end-expiratory pressure; EIT, 
electrical impedance tomography; ICU, intensive care unit
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lung ultrasonography images at different time points are 
shown in Fig. 3.

The titration group showed better respiratory system 
parameters than the control group. The compliance in the 
titration group was higher than that in the control group 
at 1 h after intubation and at the end of surgery (P = 0.011 
vs. P = 0.029). The Pplat in the titration group was lower 
than that in the control group (P = 0.003). However, the 

Ppeak was not different between groups, and these 
assessment levels were within the safe limit (Table 2).

The changes in the PaO2/FiO2 ratio were lower in both 
groups 1 h after intubation, immediately after extubation 
and 1 h after extubation than at preinduction. PaO2/FiO2 
in the titration group and in the control group at 1 h after 
intubation were 390 [330–428] vs. 321 [278–377]), as 
well as immediately after extubation (373 [338–409] vs. 
323 [278–377]). However, there was no significant differ-
ence between groups in terms of the ventilation protocol 
(P = 0.117) (Table 2).

At the 3-day follow-up, no PPCs, defined as those with 
an MGS-2 of at least 4, occurred in either group. During 
the entire surgical period, the number of patients using 
vasopressors and requiring crystalloid fluid infusion did 
not differ between groups(Table 3).

Discussion
The main findings of this study included the follow-
ing: (1) compared with a fixed 5 cmH2O PEEP, driving 
pressure-targeted PEEP could not contribute to a more 
homogeneous distribution, but it led to less aeration loss 
and improved respiratory compliance for patients who 
underwent supratentorial craniotomy, and (2) the level of 
PEEP required for optimal ventilation for neurosurgery 
was found to be lower than that currently used in clinical 
practice. Thus, these findings strongly suggest that driv-
ing pressure-targeted PEEP can be used in neurosurgery. 
Protective lung ventilation has seldom been used in neu-
rosurgery in previous studies because low TV and PEEP 
are considered to increase ICP in patients with intracra-
nial masses [15]. Recently, a small randomized clinical 
trial of patients who underwent elective neurosurgery 
showed that ICP did not differ between patients allo-
cated to traditional and protective ventilation, and dural 
tension was acceptable for surgery in all patients [28]. 

Table 1 Demographics and surgery characteristics
Characteristics control 

group
(n = 26)

titration 
group
(n = 25)

SMD
[95%CI]

Age; yr 48 (8) 47 (9) 0.11 [-0.45,0.67]

Sex; male/female 14/12 12/13 0.12 [-0.43,0.67]

BMI; kg·m− 2 25.1 (2.9) 24.6 (3.5) 0.13 [-0.43,0.70]

ASA, II, n (%) 0(0) 0(0)

III, n (%) 26 (100) 25 (100)

Hemoglobin, g·dl− 1 13.3(1.6) 13.2 (1.4) 0.12 [-0.44,0.68]

Smoking, n (%) 8 (31) 9 (36) 0.11 [-0.44,0.66]

Comorbidities, n (%) 0.51 [-0.05,1.06]

Hypertension 7 (27) 5 (20)

Diabetes 3 (12) 2 (8)

Heart disease 2 (8) 0 (0)

Position, n (%) 0.13 [-0.42,0.68]

Supine 23 (88) 21 (84)

Lateral 3 (12) 4 (16)

Type of tumor, n (%) 0.46 [-0.10,1.02]

Glioma 13 (50) 12 (48)

Meningioma 7 (27) 10 (40)

Craniopharyngioma 1 (4) 1 (4)

Pituitary tumor 1 (4) 0 (0)

Metastatic tumor 1 (4) 1 (4)

Others 3 (11) 1 (4)
Data are presented as mean(standard deviation) or a frequency with 
proportion(%). The standardized mean difference(SMD) with 95% confidence 
interval (95% CI) is calculated for the data. BMI body mass index, ASA American 
Society of Anesthesiologists

Fig. 2 Global inhomogeneity index obtained from electrical impedance tomography and lung ultrasonography scores at different time points
 Captions: *, p < 0.05; ***, p < 0.001 compared to baseline
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Our findings are in line with those of that study, which 
showed that intracranial pressure and dural tension were 
not significantly increased. Furthermore, the number of 
patients requiring vasoactive drugs and crystalloid fluid 
infusion did not differ significantly between groups. 
Therefore, this ventilation strategy is relatively safe.

DP is a significant mediator of PPCs. A DP of greater 
than 16 cmH2O has been associated with an increased 
risk of PPCs for ARDS and elective cardiac surgeries [9, 
29]. An international consensus on lung protection has 
also recommended avoiding an increase in DP [30]. In 
our single center, the DP was 9 to 12 cmH2O (median, 
10) in the titration group, which was lower than the 
median of 11 (10–12) in the control group. The opti-
mal PEEP values ranged between 2 and 7 cmH2O with a 
median of 3 cmH2O. DP is the difference between Pplat 
and PEEP [9]. A previous study presented an increased 
PEEP to optimize (minimize) driving pressure [9]. How-
ever, our study had different outcomes. We demonstrated 
that optimal PEEP, compared with the fixed PEEP of 
5 cmH2O, improved compliance intraoperatively and 
decreased Pplat. The higher compliance and lower DP 

obtained strongly suggested minimizing lung functional 
overdistention and collapse. DP scales the tidal volume 
dependence of the functional lung size and PEEP, so indi-
vidualizing the ventilatory settings intraoperatively and 
achieving an optimum DP adapted to the functional lung 
size is important [31]. This study supported the idea that 
a fixed PEEP is not suitable due to the individual charac-
teristics of the patient and surgery [16, 32, 33]. Driving 
pressure-targeted PEEP provides the optimum compro-
mise to improve aeration. In a previous study in thoracic 
surgery, the incidence of PPCs was 12.2% with conven-
tional protective ventilation and 5.5% with driving pres-
sure-guided ventilation, although the difference in DP 
between the two groups was only 1 cm H2O [16]. How-
ever, our study was unable to test differences in clinical 
outcomes, and pulmonary complications within 3 days 
after surgery were rare in both groups. More studies are 
needed to confirm the reduction in pulmonary compli-
cations 3 days after the operation. In the present study, 
each PEEP maintained 10 breathing cycles, which was 
adopted from a previous study [16]. Several studies have 
suggested that a new balance of mechanics and imaging 

Fig. 3 Representative lung ultrasonography images at different time points
The first group is the control group, and the second group is the titration group. (A) Preinduction. (B) Immediately after extubation. (C) One hour after 
extubation. At least three hyperechoic B-lines can be seen originating from the pleural line in the control group either immediately or 1 h after extubation
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could be achieved within a minute [33–35]. Neverthe-
less, 10 breaths might not be sufficient in some patients, 
which might lead to an underestimated optimal PEEP.

The GI directly represents global inhomogeneity in 
tidal ventilation [18, 36], which varies depending on the 
physiologic state of the lungs. Although the GI in the 
titration group showed a tendency to fall below baseline 
immediately after extubation, no significant differences 
were found either between groups or with baseline values 
in this study (Fig. 2A). The results are in line with a trial 
in which no statistically significant change was found in 
GI values after different levels of PEEP on EIT in the lat-
eral decubitus position during elective urologic surgery 
[37]. That study demonstrated that compliance with the 
lateral position was not accurate and was not correlated 
with the regional distribution of ventilation. Individual-
ized high PEEP titrated using EIT prevented atelectasis in 

obese patients during anesthesia but not the early post-
operative period [38]. They observed that the differences 
in ventilation distribution during mechanical ventilation 
vanished after extubation. These findings might explain 
why the GI is related to the type of surgery and position. 
Further study will be needed to test its effects on GI.

In this study, the LUSs were higher in the control group 
than in the titration group immediately and 1  h after 
extubation (Fig. 2B). This revealed that the lung-protec-
tive strategy of optimal PEEP could compensate for lung 
aeration deterioration. It exerts its effects on less aeration 
loss during the whole operation and 1  h after the extu-
bation stage. The LUSs of the titrated PEEP group were 
significantly lower than those of the constant PEEP group 
and the conventional ventilation group in elderly patients 
undergoing laparoscopic surgery [39]. Immediately after 
extubation, two patients exhibited loss of ventilation 

Table 2 Patient ventilatory mechanics and gas analysis
Characteristics control group

(n = 26)
titration group p
(n = 25) Time Group Interaction

Compliance (ml·cmH2O− 1) 0.082 0.045 < 0.001

immediately after
intubation

46 (42,49) 45 (42,48)

1 h after intubation 41 (37,46) 48 (42,54) *

end of surgery 41 (37,44) 46 (42,51) *

Ppeak (cmH2O) < 0.001 0.065 0.262

immediately after
intubation

14 (13,16) 14 (12,16)

1 h after intubation 18 (17,19) 15 (14,18)

end of surgery 18 (17,19) 16 (15,19)

Pplat (cmH2O) < 0.001 0.064 0.003

immediately after
intubation

14 (13,15) 13 (12,15)

1 h after intubation 17 (14,18) 15 (13,17)

end of surgery 17 (16,18) 15 (14,17)

PaCO2 < 0.001 0.648 0.042

preinduction 38 (36,41) 37 (35,39)

1 h after intubation 36 (35,39) 35 (33,37)

immediately after
extubation

47 (42,50) 46 (41,49)

1 h after extubation 39.6 (5.4) 43 (38,47)

pH < 0.001 0.612 0.971

preinduction 7.42 (7.41,7.44) 7.43 (7.40,7.46)

1 h after intubation 7.43 (7.41,7.44) 7.42 (7.40,7.46)

immediately after
extubation

7.34 (7.32,7.38) 7.35 (7.33,7.40)

1 h after extubation 7.37 (7.35,7.40) 7.37 (7.36,7.40)

PaO2/FiO2 0.001 0.011 0.117

preinduction 386 (341,473) 414 (384,475)

1 h after intubation 321 (274,382) 390 (330,428) *

immediately after
extubation

323 (278,377) 373 (338,409) *

1 h after extubation 309 (241,361) 382 (296,494)
Data are presented as the Median (IQR).Ppeak, airway peak pressure; Pplat, airway plateau pressure. PaCO2, partial pressure of carbon dioxide in arterial blood; 
PaO2/FiO2, the ratio of arterial partial pressure of oxygen to inspiratory oxygen fraction. *, p < 0.05 compared to the control group
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corresponding to coalescent B-lines in the control group. 
Immediately after extubation, two patients exhibited loss 
of ventilation corresponding to coalescent B-lines in the 
control group. The presence of B-line and hypoechoic 
juxta-pleural consolidations using air bronchograms or 
a tissue-like pattern are most helpful to check periopera-
tive atelectasis [22, 40]. However, the patients were not 
checked for a thoracic CT. The incidence of atelectasis 
was not detected in our study.

Individualized PEEP improved respiratory system 
mechanics, with higher respiratory system compliance 
and lower Pplat (Table  2). Perioperative PaO2/FiO2 was 
not significantly different between the ventilation proto-
col groups (P = 0.117) (Table 2). Postoperative PaO2/FiO2 
might be a potential target independently associated with 
PPCs and mortality [41, 42]. No hypoxemia was observed 
in either group. In patients who underwent open abdom-
inal surgery in a previous study, the changes in the LUSs 
were moderately correlated with changes in PaO2/FiO2 
[23].

A recruitment maneuver (RM) might be used prior 
to PEEP titration to reopen collapsed lung regions. 
However, several studies have indicated that its adverse 
effects cannot be ignored. Nemer et al. [43] observed 
that RM led to a significant increase in ICP and a sig-
nificant decrease in MAP and CPP, with no improvement 
in oxygenation. The results were consistent with that 
study, which found that a single RM before the induc-
tion of pneumoperitoneum could not improve respi-
ratory mechanics and oxygenation in elderly patients 
who underwent robotic-assisted radical prostatectomy 

[44]. Currently, RM is seldom applied in neurosurgical 
patients. The “optimal” PEEP might be different when 
noncorrected lung collapse is presented, which was not 
explored in the current study.”

There were several limitations in our study. First, the 
sample size was small, but it was adequate for achieving 
significant differences in the endpoints between groups. 
Second, because difficulties with ventilation and intu-
bation are unpredictable, the need for preoxygenation 
is desirable in all patients. All patients were preoxygen-
ated with a 0.8 FiO2 before tracheal intubation for 3 min 
in our study. A previous study indicated that preoxygen-
ation with a 0.6 or 0.8 FiO2, which causes less atelectasis 
than preoxygenation with 100% oxygen [45]. An FiO2 of 
0.3 during the induction of anesthesia is not associated 
with atelectasis [46]. However, lower oxygen concentra-
tions during the induction of anesthesia were not given. 
Third, the incremental PEEP titration was a limitation in 
our study design. An incremental PEEP trial results in 
variable end-inspiratory recruitment, which affects end-
expiratory recruitment at any particular PEEP level. The 
individualized recruitment maneuver and decremental 
PEEP titration for a further reduction in DP and a more 
homogeneous distribution of lung gas did not support 
our study design. The safety of increment titration was 
not evaluated by cerebral hemodynamics through tran-
scranial Doppler (TCD) or near-infrared spectroscopy 
(NIRS). Fourth, we did not evaluate the relationship 
between the degrees of brain tumors and PPCs. Due to 
different degrees of severity of brain tumors, the physi-
cal condition of patients varies. Fifth, we did not perform 
EIT and lung ultrasonography at the time of the surgi-
cal procedure or 3 days after the operation because of 
clinical restrictions. Finally, future studies should involve 
larger populations to assess the impact of individualized 
PEEPs. Further studies are also needed to explore the 
optimal ventilation strategy, in which LUSs will be used 
to estimate atelectasis 24 h after surgery.

Conclusions
Driving pressure-guided ventilation during supratentorial 
craniotomy did not contribute to postoperative homoge-
neous aeration, but it may lead to improved respiratory 
compliance and lower lung ultrasonography scores.

Abbreviations
PPCs  Postoperative pulmonary complications
DP  Driving pressure
EIT  Electrical impedance tomography
GI  Global inhomogeneity
LUSs  Lung ultrasonography scores
ICP  Intracranial pressure
PEEP  Positive end-expiratory pressure
PaO2/FiO2  The partial pressure of arterial oxygen to the fraction of inspired 

oxygen
ARDS  Acute respiratory distress syndrome
TV  Tidal volume

Table 3 Surgery and postoperative characteristics
Characteristics control group

(n = 26)
titration 
group
(n = 25)

p

Tidal volume; ml 450 (420,550) 460 (430,530) 0.96

RR; breaths·min− 1 12 (12,12) 12 (12,13) 0.745

Ventilation duration; min 306 (230,336) 290 (215,327) 0.55

Intraoperative fluid input; ml 2482 
(2000,2500)

2500 
(2000,2500)

0.43

Intraoperative bleeding; ml 1200 
(1000,1800)

1200 
(1000,1825)

0.789

Intraoperative urine; ml 1400 
(1200,1950)

1400 
(1150,1950)

0.906

Brain relaxation, n (%) 0.459

1 point 3 (12) 2 (8)

2 points 11 (42) 14 (56)

3 points 10 (38) 9 (36)

4 points 2 (8) 0 (0)

Vasoactive drugs, n (%) 2 (8)
0 (0)

7 (28) 0.075

VAS score > 3, n (%) 0 (0) > 0.99

PPCs; Yes 0 (0) 0 (0) > 0.99
Data are presented as the Median (IQR) or a frequency with proportion(%). 
RR, respiratory rate; VAS, visual analog scale; PPCs, postoperative pulmonary 
complications
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CT  Computed tomography
LUS  Lung ultrasonography
ASA  American Society of Anesthesiologists
BMI  Body mass index
BIS  Bispectral index
MAP  Mean arterial pressure
TOF  Train-of-four
PACU  Post-anesthesia care unit
VAS  Visual analog score
Pplat  Plateau pressure
Ppeak  Peak pressure
CPP  Cerebral perfusion pressure
ICU  Intensive care unit
RM  Recruitment maneuver
TCD  Transcranial doppler
NIRS  Near-infrared spectroscopy
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