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Abstract 

Objective To examine the prognostic value of HRV measurements during anesthesia for postoperative clinical out-
comes prediction using machine learning models.

Data sources VitalDB, a comprehensive database of 6388 surgical patients admitted to Seoul National University 
Hospital.

Eligibility criteria for study selection Cases with ECG lead II recording duration of less than one hour were 
excluded. Cases with more than 20% of missing HRV measurements were also excluded. A total of 5641 cases were 
eligible for the analyses.

Methods Six machine learning models including Logistic Regression (LR), Support Vector Machine (SVM), Random 
Forest (RF), Gradient Boosting Decision Trees (GBT), Extreme Gradient Boosting (XGB), and an ensemble of the five 
baseline models were developed to predict postoperative clinical outcomes. The prediction models were trained 
using only clinical information, and using both clinical information and HRV features, respectively. Feature importance 
based on the SHAP method was used to assess the contribution of the HRV measurements to the outcome predic-
tions. Subgroup analysis was also performed to evaluate the risk association between postoperative ICU stay and 
various HRV measurements such as heart rate, low-frequency power (LFP), and short-term fluctuation DFA α1.

Result The final cohort included 5641 unique cases, among whom 4678 (83.0%) cases had ages over 40, 2877 
(51.0%) were male, 1073 (19.0%) stayed in ICU after surgery, 52 (0.9%) suffered in-hospital death, and 3167(56.1%) 
had a total length of hospital stay longer than 7 days. In the final test set, the highest AUROC performance with only 
clinical information was 0.79 for postoperative ICU stay, 0.58 for in-hospital mortality, and 0.76 for the total length of 
hospital stay prediction. Importantly, using both clinical information and HRV features, the AUROC performance was 
0.83, 0.70, and 0.76 for the three clinical outcome predictions, respectively. Subgroup analysis found that patients with 
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an average heart rate higher than 70, low-frequency power (LFP) < 33, and short-term fluctuation DFA α1 < 0.95 during 
anesthesia, had a significantly higher risk of entering the ICU after surgery.

Conclusion This study suggested that HRV measurements during anesthesia are feasible and effective for predicting 
postoperative clinical outcomes.

Keywords Anesthesia, HRV, Machine learning, Surgery, Clinical outcome

Key points
Question: Whether intraoperative HRV during anesthe-
sia in patients presenting for non-cardiac surgery could 
have prognostic value.

Findings: This study suggests that HRV measurements 
during anesthesia are feasible and effective for predicting 
postoperative clinical outcomes.

Meaning: Intraoperative HRV during anesthesia in 
patients presenting for non-cardiac surgery may be used 
to predict prognosis in the future.

Introduction
Anesthesia is a medical treatment used to prevent pain 
during surgical procedures. The adverse effects of the 
complex stress response could lead to serious compli-
cations and possibly, the risk of death. Early retrospec-
tive studies reported that the overall risk of death from 
general anesthesia is possibly at least 1 per 40000 anes-
thetics [1] while a perioperative mortality rate of 16 per 
10000 anesthetics was reported in a later investigation 
[2]. Given the mortality rate of anesthetic patients under-
going surgery, it is reasonable to speculate possible pre-
dictors of perioperative clinical outcomes to improve 
survivals, reduce the length of ICU stay, and ultimately 
provide special care for poor-outcome patients. Recent 
studies suggested that there is a strong association 
between HRV and the nociception–analgesia balance 
during general anesthesia under surgery [3, 4].

Heart rate variability (HRV) is defined as the changes 
in time intervals between consecutive heartbeats (R-R 
intervals). The variability of heart rate is controlled by 
the autonomic nervous system (ANS) including the sym-
pathetic nervous system (SNS) and the parasympathetic 
nervous system (PNS). HRV has been found to reflect 
the balance between the two nervous systems [5] and is 
frequently introduced as mirroring imbalances within 
the autonomic nervous system. The measurements of 
HRV can be easily obtained from long-term ( ≥ 24hours ) 
or short-term ( ≤ 5minutes ) electrocardiogram (ECG) 
recordings, as a result, HRV has been considered as 
a low-cost and non-invasive method for quantitative 
measurements of autonomic activity [6]. Recent studies 
identified HRV as a promising marker for mortality risk 
assessment and patients’ outcome prediction [7, 8]. The 

reliable measurement of autonomic conditions offers the 
opportunity to detect autonomic dysfunction-related ill-
nesses such as myocardial infarction, trauma, sepsis, and 
brain injury [9–12].

There have been investigations on the association of 
HRV parameters and the incidence of major adverse car-
diac and cerebrovascular events such as cardiac arrest, 
traumatic brain injury, congestive heart failure, and myo-
cardial infarction [12–15]. Abnormal HRV was found to 
be strongly associated with congestive heart failure in old 
adult population groups [16]. Both classical and recent 
experiments show that patients with decreased HRV sig-
nificantly increased the risk for poor clinical outcomes, 
including death with or without congestive heart fail-
ure [13–15, 17, 18]. Meta-analysis investments are also 
implemented to further explain the relationship between 
HRV and diagnosis [19]. Therefore, HRV has shown a 
promising result as a predicting marker for cardiovas-
cular-related disorders. However, for patients undergo-
ing general or regional anesthesia, the HRV parameters 
under such states present fairly different characteristics, 
which makes it difficult to be interpreted. Some machine 
learning methods were used to predict the human state 
with the HRV, but those methods and the medical expla-
nations were not comprehensively introduced [20, 21]. 
As a result, HRV during anesthesia lacks an understand-
able explanation, and the study on the prognostic values 
of intraoperative HRV during surgery remains an open 
research problem.

This study aims to investigate the aspects of HRV meas-
urements obtained from admissions in patients under-
going non-cardiac surgery from the VitalDB database 
and to examine whether HRV during anesthesia could 
be used to predict clinical outcomes such as in-hospital 
mortality, postoperative ICU stays, and total length of 
hospital stays.

Methods
Data collection and preprocessing
We conducted a comprehensive study to investigate the 
potential relationship between intraoperative HRV and 
clinical outcomes prediction. The data was obtained from 
the VitalDB dataset, which is a comprehensive dataset 
composed of intraoperative bio-signals and clinical infor-
mation [22]. The dataset includes high-quality bio-signals 



Page 3 of 10Niu et al. BMC Anesthesiology          (2023) 23:160  

such as 500 Hz ECG waveform signals from patients who 
underwent routine or emergency surgery in 10 out of 31 
operating rooms in Seoul National University Hospital 
from August 2016 to June 2017. All the patients got non-
cardiac (general, thoracic, urologic, and gynecologic) 
surgeries. The intraoperative ECG signals were used to 
calculate different HRV measurements, while clinical 
information was used as auxiliary features.

To develop our machine learning models, we used a 
cohort of 6531 cases from the dataset, with an additional 
selection criterion applied. We extracted the ECG II sig-
nals recorded by the SNUADC device for each case. The 
ECG lead II was used because it has the most obvious 
characteristics for P and R waves. Cases with an ECG sig-
nal duration of less than one hour were excluded. A total 
of 6064 cases remained for HRV calculation.

Feature extraction
BioSPPy, a toolbox for bio-signal processing, was used to 
extract the R wave from each ECG signal. R peaks were 
then detected, and NN intervals were calculated. To facil-
itate further analysis, data cleaning was performed using 
the hrv-analysis package to remove outliers and cor-
rupted data.

After R peaks detection, HRV features were then com-
puted using the pyhrv package [23]. There were 76 effec-
tive HRV features computed from each signal, including 
time domain, frequency, and nonlinear features. Addi-
tional 9 clinical features such as age, operation time, and 
anesthesia time were also included. The feature set used 
in our study consisted of the HRV features and the clini-
cal features. These features were selected to fully reflect 
the characteristics of patients under anesthesia. Clini-
cal information provided the patient’s health status and 
demographic information, while HRV information could 
quantify the overall changes in heart rate. Clinical and 
HRV information complemented each other, leading 
to better patient outcomes predictions. The prediction 
models were trained with only clinical information, and 
with both clinical information and HRV features, respec-
tively and separately.

A certain amount of HRV features were missing in 
some cases due to ECG data quality. We excluded cases 
with a missing rate more than 20% to reduce the impact 
of data quality. For cases that remained, missing values 
were forward filled, which means to fill in the missing 
value with the previous value. Backward filling and lin-
ear interpolation were also tested, and they turned out 
to have little impact on the results. In addition, outliers 
were detected and removed.

After data filtering, A total of 5641 cases were eligible 
for analysis. We chose 30-min segment from each case as 
a feature-extracted target. Preferably, we chose segments 

with less filled data. 85 features were extracted from 
each case, of which 76 were HRV features and 9 were 
clinical features. The complete cohort selection and fea-
ture extraction process are shown in the flow diagram of 
Fig. 1.

Experiment methods
The primary outcome of this study was the postoperative 
ICU stay, the secondary outcome was in-hospital mortal-
ity, and the total length of hospital stay. The Postopera-
tive ICU stay was transformed into a two-class problem, 
i.e., whether or not the patients go to ICU after surgery. 
The Total length of hospital stay was transformed from 
the continuous values of the hospital stay duration into 
four intervals of different lengths, leading to a multi-
class problem. The in-hospital mortality contains very 
few death outcomes, resulting in an extreme data imbal-
ance. To deal with the data imbalance problem, SMOTE 
technique [24] was used to synthesize new samples for 
the minority class which effectively balances the class 
distribution. With oversampling of the minority class 
data, we obtained a more balanced dataset, this approach 
could help the prediction models to achieve better 
performance.

In our experiment, we randomly split the dataset with 
no patient overlap into two: 70% of the cases as the train 
set, and the remaining 30% of the cases as the test set. 
We performed five-fold cross-validation on the train 
set to select the best hyper-parameters for each model. 
F1-score and AUROC metrics were used to evaluate the 
model performance. The ROC curve shows the relation 
between true positive rate (i.e., the fraction of predicted 
ICU stays that stayed in ICU, also called sensitivity) and 
false positive rate (the fraction of non-ICU stays but pre-
dicted to stay ICU, equals to 1-specificity) under different 
probability thresholds. The closer the ROC curve is to the 
upper left, the higher area under the curve and the better 
discriminatory ability the model could achieve. The area 
under the curve (AUROC) is an important indicator for 
evaluating the classifier’s performance.

Prediction models
Six machine learning models including Logistic Regres-
sion (LR), Support Vector Machine (SVM), Random 
Forest (RF), Gradient Boosting Decision Trees (GBT), 
Extreme Gradient Boosting (XGB), an ensemble of 
these five baseline models were developed to predict 
the three clinical outcomes, which makes up a total of 
18 models. Logistic Regression (LR) was used for its 
low computational time, and robustness to small noise. 
Support Vector Machines (SVM) are generally not sen-
sitive to noise and outliers since the model focuses on 
a small set of support vectors in which a hyperplane 



Page 4 of 10Niu et al. BMC Anesthesiology          (2023) 23:160 

is constructed from the support vectors to separate 
between classes, this helps it capture key samples and 
ignore most other large numbers of redundant samples. 
Random Forest (RF) has the advantage of processing 
high-dimensional data, and feature importance can be 
measured with this model. Gradient Boosting Decision 
Trees (GBT) were also included because of their flex-
ibility in processing various types of data, namely con-
tinuous values and discrete values. Using some robust 
loss functions, GBT could be very robust to outliers. 
On this basis, to prevent overfitting, Extreme Gradi-
ent Boosting (XGB) was also included. Furthermore, 
an ensemble of these five models was also tested in our 
study.

Results
The characteristics of the 5641 eligible cases are pre-
sented in Table  1, some demographic information and 
HRV features are also included in the table (Percentage 
values may not add up to 100 due to rounding). Upon 
counting the characteristics of features, several T-tests 
were carried out. People with different characteristics 
were assumed to have the same distribution of ICU stay 
time in T-tests, while p-values were lower than 0.001 and 
the assumptions were rejected. Therefore, T-tests proved 
that people with different characteristics might have dif-
ferent lengths of ICU stay. This test proved that it was 
possible to predict postoperative clinical outcomes based 
on distinct characteristics.

Fig. 1 Flow diagram of case selection and inclusion criteria for cases in VitalDB dataset. Certain cases with sufficient duration and clear features 
were selected. Supplementary clinical features were included
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Among the 5641 unique cases, 2877 (51.0%) were 
male. 4678 (83.0%) cases had ages over 40 while only 
183 (2.2%) cases had ages over 80. For the outcome var-
iables, 1073 (19.0%) cases stayed in ICU after surgery, 
and only 52 (0.9%) cases died in the hospital compared 

to 5589 (99.1%) cases did not die in the hospital. The 
proportion of the four classes in the total length of hos-
pital stay outcome is relatively balanced compared to 
the other two outcomes, ranging from 1103(19.6%) to 
1755(31.1%).

In the final test set, postoperative ICU stay, in-hos-
pital mortality, and total length of hospital stay were 
predicted. The F1-score and AUROC of all 18 models 
on the three clinical outcome predictions are computed 
and shown in Fig. 2. The F1-score is the harmonic mean 
of the precision and recall, which symmetrically rep-
resents both precision and recall in one metric. The 
AUROC is the area under the ROC curve, which shows 
the performance of a classification model at all possi-
ble thresholds. Using only clinical information (with-
out HRV features, which are No.77 to No.85 features in 
Table S1 in supplementary files), the highest AUROC 
that all models could achieve were 0.79, 0.58, 0.76 for 
postoperative ICU stay, in-hospital mortality, and total 
length of hospital stay, respectively. While using both 
clinical information and HRV features (all 85 features 
in Table S1 in supplementary files), the highest AUROC 
that the models could reach were 0.83, 0.70, and 0.76 
for the three clinical outcomes, respectively. In almost 
all cases, the presence of HRV features significantly 
improves the performance of the baseline models (both 
AUROC and F1- score). The only exception was the 
result from the in-hospital mortality prediction where 
we obtained an F1-score of 0.53 with clinical informa-
tion compared to 0.51 using both clinical and HRV 
features. These results suggested that HRV during anes-
thesia can be useful for predicting postoperative clini-
cal outcomes.

The ROC curves of different models for postoperative 
ICU stay prediction are shown in Fig.  3. All six mod-
els achieved similar results, in which AUROC without 
HRV features could reach up to 0.78, and that can be 
increased to 0.83 when including HRV features, which 
suggests the effectiveness of HRV features in postop-
erative ICU stay prediction.

To explore the simplified parameters of intraopera-
tive HRV during anesthesia for poor prognosis, we per-
formed a subgroup analysis. We found that patients 
with an average heart rate higher than 70 (0.255 vs. 
0.230,p− value < 0.001 ) (Fig. S1), low-frequency power 
(LFP) lower than 33 (0.275 vs. 0.238 p− value < 0.001 ) 
(Fig. S2), short-term fluctuation DFA α1 lower than 
0.95 (0.319 vs. 0.254, p− value < 0.001 ) (Fig. S3), dur-
ing anesthesia had a significantly higher risk of entering 
the ICU after surgery. Cut-off values of the parameters 
referred to the classical research, namely the Framing-
ham Heart Study [13] and BEAUTIFUL analysis [25]. 
Results were consistent with the classical research.

Table 1 Clinical and HRV characteristics for 5641 patients 
undergoing non-cardiac surgery

Features Characteristic Count (%) p-value

Gender < 0.001

male 2877 (51.0)

female 2764 (49.0)

Age (years) < 0.001

0–19 96 (1.7)

20–39 684 (12.1)

40–59 2288 (40.6)

60–79 2390 (42.4)

80 + 183 (2.2)

Anesthesia time (hours) < 0.001

0–2 1656 (29.4)

3–4 2270 (40.2)

5–6 1221 (21.6)

7 + 494 (8.8)

Average heart rate < 0.001

0–59 552 (9.8)

60–69 1516 (26.9)

70–79 1705 (30.2)

80–99 1469 (26.0)

100 + 399 (7.1)

Relative FFT LF Power < 0.001

0–19 993 (17.6)

20–39 2964 (52.5)

40–59 1648 (29.2)

60 + 36 (0.6)

DFA α1 < 0.001

0–1 383 (6.8)

1–1.2 1728 (30.6)

1.2–1.4 3046 (54.0)

1.4 + 484 (8.6)

Postoperative ICU stay /

No 4658 (81.0)

Yes 1073 (19.0)

In-hospital mortality /

No 5589 (99.1)

Yes 52 (0.9)

Total length of hospital stays 
(days)

/

0–3 1103 (19.6)

4–6 1371 (24.3)

7–9 1412 (25.0)

10 + 1755 (31.1)
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Discussion
HRV measurements
Various types of measurements will be considered when 
selecting appropriate features. HRV measurements can 
be analyzed in the time domain, frequency domain, and 
non-linear measures. Time domain analysis quantifies 
statistics from the overall time intervals between normal 
heartbeats. Frequency domain measurements calculate 
the power spectrum from the R-R intervals. Non-lin-
ear measures quantify the overall variability into useful 
nonlinear prosperities using various techniques such as 

invariant methods, informational entropy methods, and 
geometrical methods.

Due to easy settings, time domain measures have 
been widely used. The most commonly used measures 
of time domain metrics include NN intervals, SDNN, 
SDANN, RMSSD, NN50, and pNN50. NN intervals 
refer to the intervals between normal R peaks, there-
fore NN intervals and R-R intervals are synonymous. 
SDNN is the standard deviation of the NN intervals; 
it measures the variation of the NN intervals which 
reflects the combined influence of both SNS and PNS 

Fig. 2 F1-score and AUROC of all 18 models on 3 clinical outcomes prediction with mean and 95% confidence interval reported. In most cases, 
using both clinical information and HRV features could significantly improve the performance of the baseline models

Fig. 3 ROC curves for postoperative ICU stay prediction. Among all six models, the true positive rate increased while HRV features were included, 
which suggests the effectiveness of HRV features in postoperative ICU stay prediction
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activity [26]. Similar to SDNN, SDANN computes the 
standard deviation using the average of NN intervals 
from each 5-min segment of a long recording. RMSSD 
is the root mean square of successive NN interval dif-
ferences; it reflects beat-to-beat variance in short-term 
HRV. The number of consecutive NN intervals that dif-
fers by more than 50 ms is known as NN50, and pNN50 
is the percentage of NN50 over the entire NN series.

Frequency domain measurements utilize Fast Fou-
rier Transform to decompose HRV signal energy into 
various frequency bands; the four most widely used fre-
quency ranges are ultra-low-frequency (ULF, ≤ 0.003Hz ), 
very-low-frequency (VLF, 0.0033− 0.04Hz ), low-fre-
quency (LF, 0.004 − 0.15Hz ), and high frequency (HF, 
0.15− 0.40Hz ). The signal energy within a frequency 
band can be expressed in absolute or relative power, 
which is measured as milliseconds squared per hertz 
( ms2/Hz ) and normal units (nu), respectively. The ULF 
band indicates fluctuation in consecutive normal beats 
intervals. The VLF band captures rhythms with periods 
between 25 and 300  s. The LF and HF bands are influ-
enced by breathing, and LF/HF (ratio of LF to HF) may 
be used to measure the proportion of the SNS and PNS 
activity under a controlled state [27, 28].

Non-linear measurements offer a tool to quantify the 
complexity mechanisms of HRV, which cannot be effec-
tively modeled under stationary requirements and lin-
ear assumptions. Poincaré plot is one of the geometrical 
methods, it presents graphical plots in which a scatter 
plot is constructed from each NN interval plotted against 
its successive NN intervals. Several non-linear features 
can be obtained by fitting an ellipse to the plotted points 
including the standard deviation of the major and minor 
axes (SD1 and SD2, respectively), SD2/SD1 ratio, and area 
of the Poincaré ellipse. Entropy methods such as sample 
entropy allow us to quantify the complexity or irregularity 
of a series of RR intervals, it has the advantage of being less 
biased and consistent for very short time series. Detrended 
fluctuation analysis (DFA) is a technique for detecting the 
long-term and short-term correlation of NN intervals. 
This method was proposed specifically to handle non-sta-
tionary characteristics in long-term HRV series. The short-
term fluctuation denoted as α1 reflects the baroreceptor 
reflex, while the long-term fluctuation denoted as α2 indi-
cates the regulatory mechanisms that control alternating 
activities of the beat cycle.

Different measurements indicate different characteris-
tics of the case. Therefore, HRV measurements analyzed 
in the time domain, frequency domain, and non-linear 
measures are all taken into consideration, as well as some 
clinical features. 76 HRV features and 9 clinical features 
are used in the experiment, and details are described in 
the supplementary files.

Importance analysis
We conducted experiments to verify the prognostic val-
ues of the intraoperative HRV using various machine 
learning models, the results suggested that HRV is effec-
tive for postoperative clinical outcome predictions. 
Notice that the 95% confidence interval of in-hospital 
mortality outcome predictions was relatively large com-
pared to the confidence interval of the other two outcome 
predictions, this is due to the extreme class imbalance 
in the data in which the models had high uncertainty in 
their predictions. In addition, we observed that the in-
hospital mortality prediction had the most performance 
increases when using both clinical and HRV features. 
Although SMOTE technique was applied in both set-
tings (with or without HRV features), using only clinical 
information appeared to achieve very poor results, this 
showed that HRV features played a significant role in 
class imbalance setting, and when clinical information 
alone is insufficient for predicting related clinical out-
comes, which is, in this case, the in-hospital mortality.

We investigated into feature importance of HRV and 
used it as theoretical support to analyze the classification 
decisions of the models. We computed the importance of 
HRV features using the SHAP value method [29] for post-
operative ICU stay prediction. The SHAP value method 
quantifies contribution that each feature brings to the 
prediction made by the model. The top 10 HRV features 
given by the SHAP value method are shown in Fig. 4. The 
most important HRV features mainly include heart rate 
(mean of heart rate and NN interval), frequency domain 
low-frequency intensity, and short-term fluctuations DFA 
α1 . The result from the SHAP value plot in Fig. 4 showed 
that mean of heart rate (hr_mean), relative energy of low 
frequency after FFT (fft_rel_lf), and max NN interval (nni_
max) were associated with a higher risk of postoperative 
ICU stay when the feature values are increased. Contra-
rily, increases in DFA α1(dfa_alpha1), mean of NN inter-
val (nni_mean), triangular index measurement (tri_index, 
equals the number of all NN intervals divided by the maxi-
mum of the density distribution), the standard deviation of 
heart rate (hr_std), absolute energy of very low frequency 
after FFT (fft_abs_vlf), the peak of high-frequency HRV 
after FFT (fft_peak_hf) were found to be associated with 
lower risk of postoperative ICU stay.

Regarding the heart rate, it was shown that patients with 
a heart rate higher than 70 could increase the risk of cardio-
vascular diseases [25]. To understand the outcome risks of 
each subgroup, we conducted a subgroup analysis that used 
the same threshold of 70 for average heart rate to divide 
cases into two subgroups. Our finding was consistent with 
the retrospective study mentioned earlier (Fig. S1).

For low-frequency power (LFP) in the frequency 
domain feature, it was reported that lower LFP will lead 
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to a higher risk of death from all causes [17]. In this sub-
group analysis, we divided LFP evenly into three sub-
groups. We showed that lower LFP was associated with 
a higher risk of entering the ICU after surgery, which was 
also consistent with the previous studies (Fig. S2).

For short-term fluctuation DFA α1 , it was found that 
when short-term fluctuation is low, i.e., DFA α1 lower 
than 0.95, the patient’s survival probability will be sig-
nificantly reduced [30]. Similarly, we used the same 
threshold of 0.95 and conducted a subgroup analysis for 
short-term fluctuation. The result suggested that patients 
with DFA α1 lower than 0.95 would have a significantly 
higher risk of entering the ICU after surgery (Fig. S3).

From a medical perspective, heart rate is the most 
direct manifestation of heart health. Low-frequency 
power reflects a mixture of sympathetic and parasym-
pathetic activity of the heart. Short-term fluctuation 
represents a response to the transient change in blood 
pressure, which can indicate the autonomic regulation of 
heart rate. Therefore, those features can reflect prognosis.

Strengths and limitations
Our experiment demonstrated that the use of HRV could 
potentially increase the predictive performance across all 
trained models. Multiple commonly used machine learn-
ing models were adopted, which formed a comprehensive 
experiment. Using machine learning methods, we ana-
lyzed clinical problems more quantitatively, which gave 

an understandable explanation of the importance of HRV 
during anesthesia.

Acknowledge that there is still room for improve-
ment, we hope to expand the scope of application, 
from low-risk to other high-risk diseases. Also, due 
to data limitations, we train and verify the data in the 
same database. Therefore, some other data should be 
introduced for verification. In addition, we hope that 
HRV analysis would be applied to real-world clinical 
applications to provide target therapy for patients with 
abnormal HRV.

Conclusion
In this study, we developed multiple machine learn-
ing models for postoperative clinical outcomes predic-
tion among patients undergoing surgery with anesthesia 
using clinical and HRV data collected from the VitalDB 
database. The presence of HRV features significantly 
improves the performance of the baseline models, the 
results suggested that HRV during anesthesia is feasible 
for predicting postoperative clinical outcomes. We iden-
tified and analyzed the most effective features as well.

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s12871- 023- 02118-9.

Additional file 1.  

Fig. 4 Top 10 HRV features with the highest SHAP value. The most important HRV features mainly include heart rate, frequency domain 
low-frequency intensity and short-term fluctuations. The results could be supported by clinical practice. Therefore, these features can be used as 
diagnostic basis
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