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Abstract
Background Anesthesiologists are required to maintain an optimal depth of anesthesia during general anesthesia, 
and several electroencephalogram (EEG) processing methods have been developed and approved for clinical use to 
evaluate anesthesia depth. Recently, the Hilbert–Huang transform (HHT) was introduced to analyze nonlinear and 
nonstationary data. In this study, we assessed whether the changes in EEG characteristics during general anesthesia 
that are analyzed by the HHT are useful for monitoring the depth of anesthesia.

Methods This retrospective observational study enrolled patients who underwent propofol anesthesia. Raw EEG 
signals were obtained from a monitor through a previously developed software application. We developed an HHT 
analyzer to decompose the EEG signal into six intrinsic mode functions (IMFs) and estimated the instantaneous 
frequencies (HHT_IF) for each IMF. Changes over time in the raw EEG waves and parameters such as HHT_IF, BIS, 
spectral edge frequency 95 (SEF95), and electromyogram parameter (EMGlow) were assessed, and a Gaussian process 
regression model was created to assess the association between BIS and HHT_IF.

Results We analyzed EEG signals from 30 patients. The beta oscillation frequency range (13–25 Hz) was detected 
in IMF1 and IMF2 during the awake state, then after loss of consciousness, the frequency decreased and alpha 
oscillation (8–12 Hz) was detected in IMF2. At the emergence phase, the frequency increased and beta oscillations 
were detected in IMF1, IMF2, and IMF3. BIS and EMGlow changed significantly during the induction and emergence 
phases, whereas SEF95 showed a wide variability and no significant changes during the induction phase. The root 
mean square error between the observed BIS values and the values predicted by a Gaussian process regression model 
ranged from 4.69 to 9.68.

Time-trend analysis of the center 
frequency of the intrinsic mode function 
from the Hilbert–Huang transform 
of electroencephalography during general 
anesthesia: a retrospective observational 
study
Yurie Obata1*, Tomomi Yamada2, Koichi Akiyama3 and Teiji Sawa2

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12871-023-02082-4&domain=pdf&date_stamp=2023-4-14


Page 2 of 11Obata et al. BMC Anesthesiology          (2023) 23:125 

Background
In general anesthesia management, too shallow gen-
eral anesthesia leads to a risk of intraoperative arousal, 
while excessively deep anesthesia may be associated with 
delayed arousal and postoperative cognitive dysfunction 
[1]. Therefore, anesthesiologists would like to maintain 
an optimal anesthesia level by evaluating the depth of 
anesthesia.

Because differences in the dosage of general anesthet-
ics affect electroencephalogram (EEG) recordings, cap-
turing the changes in EEG during general anesthesia is 
considered a practical method for monitoring the depth 
of anesthesia. Currently, several processing methods 
for measuring EEG changes have been developed and 
approved for clinical use in depth-of-anesthesia moni-
toring [2]. The Bispectral Index (BIS™, Medtronic, Boul-
der, CO, USA) based on frequency domain analysis is the 
most-used method to date [3]. Other examples include 
the Patient State Index (PSI, Masimo Corp., Irvine, CA, 
USA) obtained from EEG power, frequency, and phase 
information [4], M-entropy (GE Healthcare, Helsinki, 
Finland), which measures state entropy [5], and the audi-
tory evoked potential (AEP) that measures the latency of 
a cortical response to auditory stimuli [6]. More recently, 
analysis methods using algorithms other than Fourier 
analysis have been reported. Mode decomposition, which 
can extract essential characteristic structural information 
hidden in multidimensional time series data, is one such 
new method. Mode decomposition extracts characteris-
tic unit components, “modes”, that make up a phenom-
enon in the data [7]. The waveform is decomposed into 
characteristic modes, also called intrinsic mode func-
tions (IMFs), and when all modes are added together 
they reproduce the original waveform. When mode 
decomposition is applied to EEG analysis, the resulting 
mode-decomposed EEG waveforms are EEGs with char-
acteristics in a specific narrow frequency band. Among 
the various mode decomposition methods described, 
empirical mode decomposition (EMD) is a time-fre-
quency analysis method that was proposed by Huang 
et al. in 1998 [8]. Analysis using EMD was later coupled 
with the Hilbert transform and defined as the Hilbert–
Huang transform (HHT). Several trials utilizing the HHT 
to evaluate EEG changes during general anesthesia have 
recently been reported [9–11]. However, none of these 
studies showed the dynamic changes of the instantaneous 
frequencies in each IMF throughout the anesthesia. 

We hypothesized that one of these IMFs identifies the 
changes in the EEG signal and it represents the action 
of anesthesia. In this study, we analyzed the changes in 
EEG during the induction, maintenance, and emergence 
of general anesthesia under intravenous propofol as time-
series changes in the instantaneous frequency character-
istics of the HHT, and investigated whether these HHT 
characteristics caused by anesthetic administration are 
useful for monitoring the depth of anesthesia.

Methods
All experiment protocols involving humans were con-
ducted in accordance with the principles of the Declara-
tion of Helsinki. The current study was approved by the 
Institutional Review Board (IRB) for Human Experiments 
at the Kyoto Prefectural University of Medicine (KPUM) 
(No. ERB-C-1074-2), and the IRB of Yodogawa Christian 
Hospital (YCH) (No. 2020-023). For this non-interven-
tional and noninvasive retrospective observational study, 
the requirement for informed patient consent was waived 
by the IRB of KPUM; patients were provided with an opt-
out option, about which they were notified in the pre-
operative anesthesia clinic. However, written informed 
consent was obtained from patients involved in the study 
at YCH. Patients who underwent general anesthesia with 
propofol for anesthetic induction and maintenance were 
enrolled. Patients who had medical contraindications to 
propofol, who underwent brain surgery or cardiac sur-
gery, and those aged 75 years or older were excluded, as 
were emergency cases.

Anesthesia management
In our facility, the use of a BIS monitor is routine for 
adult patients who undergo surgery involving general 
anesthesia. The anesthesiologists in charge of manage-
ment did not receive notice of the study and planned the 
anesthesia methods for scheduled surgeries following our 
facility’s standard care protocol, without any feedback 
regarding the online analysis of processed EEG signals. 
Patients were not premedicated before anesthesia induc-
tion, in accordance with our facility’s standard protocol.

A BIS electrode sensor was attached to the forehead 
before the induction of anesthesia. Anesthesia was 
induced with a target-controlled intravenous infusion of 
propofol (1.5–2.0 mg·kg− 1, 1% Diprivan injection kit, San-
doz K.K., Tokyo, Japan) to provide an effect-site concen-
tration of 3.0–4.0 µg·mL− 1, and a continuous intravenous 

Conclusions We applied the HHT to EEG analyses during propofol anesthesia. The instantaneous frequency in 
IMF1 and IMF2 identified changes in EEG characteristics during induction and emergence from general anesthesia. 
Moreover, the HHT_IF in IMF2 showed strong associations with BIS and was suitable for depicting the alpha oscillation. 
Our study suggests that the HHT is useful for monitoring the depth of anesthesia.
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infusion of remifentanil (0.3–0.5  µg·kg− 1  min− 1). After 
there was no response to calling and disappearance of 
the eyelash reflex was confirmed, rocuronium (0.8–
1.0  mg·kg− 1) was intravenously administered and tra-
cheal intubation was conducted. The anesthesia was 
maintained with propofol at an effect-site concentration 
of 2.0–3.0 µg·mL− 1, small doses of fentanyl (1–2 µg·kg− 1 
per dose), continuous intravenous infusion of remifent-
anil (0.125–0.25 µg·kg− 1·minute− 1), and additional main-
tenance doses of rocuronium (0.2  mg·kg− 1 at intervals 
of 20–30 min). At the phase of emergence from general 
anesthesia, sugammadex (4 mg·kg− 1) was administered to 
reverse the neuromuscular blockade effect. Patients were 
extubated when they were able to follow commands and 
showed spontaneous ventilation.

Data acquisition
We previously developed a software application named 
“EEG Analyzer” to obtain raw EEG signals from a BIS 
A-2000 monitor (version 3.23; Medtronic, Minneapo-
lis, MN, USA) through an RS-232 interface [12]. A BIS 
Quatro sensor was attached on the frontal region, in 
accordance with the manufacturer’s recommendations 
and single frontal channel EEG was recorded. The digi-
tized EEG packets with a sampling frequency of 128 Hz 
were obtained through the serial output of the BIS moni-
tor that sent a packet of sixteen sets of EEG mV data (32 
bits) and eight packets per second (128  Hz). The EEG 
signals were saved on a personal computer (PC) as a tsv 
file. The obtained EEG signal was already preprocessed 
by the BIS monitor. The details of the signal preprocess-
ing were described previously [13]. We didn’t apply any 
further preprocessing. The BIS value, spectral edge fre-
quency 95 (SEF95), suppression ratio (SR), and electro-
myogram (EMG) parameter EMGlow were also saved 
to the PC every 3 s. In this study, we analyzed the tem-
poral changes in the associations between the raw EEG 

waves and parameters such as observed BIS, SEF95, and 
EMGlow. We focused on three 7-minute phases of anes-
thesia induction, anesthesia maintenance (30  min after 
the incision), and emergence from anesthesia.

Hilbert–Huang transform
For an EEG signal x(t), the EMD decomposes the signal 
into a series of intrinsic mode functions (IMFs), Cn (n = 1, 
2,. . ., N), where N is the number of IMFs. EMD starts by 
identifying the upper and lower envelopes of x(t); then, 
the mean of the upper and lower envelopes is designated 
as (m1) (Fig. 1, the program code is shown in Supplemen-
tary Digital Document 1). The difference between x(t) 
and m1 is the first component, h1.

 x(t) − m1 = h1 (1)

Ideally, h1 should be an IMF. If h1 does not satisfy all 
requirements of an IMF, the sifting process is repeated. 
The IMFs need to meet the following two requirements: 
(1) each IMF has the same number of zero crossings and 
extremes; and (2) the IMF is symmetric with respect to 
the local mean. The IMFs were calculated using the pro-
cessing function “void emd(< double > eeg_data)”. After 
EMD, a signal x(t) can be written as

 
x(t) =

n−1∑

i=1

imf (t)i + rn(t) (2)

The Hilbert transform is applied to the IMF components 
and the analytic signal Z(t) is obtained as follows [10]:

 Z(t) = imf (t) + iH [imf (t)] = a(t)ei ∫ ω(t)dt  (3)

in which

Fig. 1 An EEG signal and its mean with the upper and lower envelopes
 This EEG signal was obtained from a 28-year-old woman during the anesthesia maintenance phase. The length and the sampling rate were 8 s and 
128 Hz, respectively
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 a(t) =
√

imf 2(t) + H2[imf (t)]  (4)

 
ω(t) =

d

dt
[arctan(H [imf (t)]/imf (t))] (5)

 
h(ω) =

∫
H(ω, t)dt  (6)

where ω(t) and a(t) are the instantaneous frequency and 
amplitude of the IMF used to obtain a time-frequency 
distribution for signal x(t) and the Hilbert amplitude 
spectrum H(ω, t). In order to use the unique definition of 
instantaneous frequency, we need to decompose a com-
plex data set into IMF components so that an instanta-
neous frequency can be assigned to each IMF. Otherwise, 
the instantaneous frequencies will be non-physical nega-
tive frequency values which are meaningless [8].

An 8-s epoch of an EEG series from a patient in the 
anesthesia maintenance state and the EMD of this EEG 
epoch are shown in Fig. 2. (The program code is shown 
in Supplementary Digital Document 1.) This EEG series 
is composed of five IMFs and a residual. These IMFs are 
near-orthogonal components that have no overlap in fre-
quency. The summation of the IMFs and the residual is 
equivalent to the original EEG series, according to Eq. (2).

We developed the HHT analyzer to perform the HHT 
and display the Hilbert spectrogram using Processing ver. 
3.5.4 (Processing Foundation) [14]. First, the program 
performs EMD to decompose the waveform into six 
IMFs. Then, the Hilbert transform is applied to each IMF 
to obtain instantaneous frequencies and amplitudes. We 
used IntelliJ IDEA ver. 2021.2 (JetBrains, Praha, Czech 
Republic) to handle two Java jar files named emd.jar 
and jdsp.jar. The former was downloaded from an open-
access website [15] and the latter was collected from 
JDSP ver. 0.7.0, which is a java library for digital signal 
processing [16]. These components were integrated using 
the integrated development environment of Processing 
ver. 3.5.4, and a graphical user interface (GUI) for the 
Hilbert spectrogram was constructed (Fig. 3 and Supple-
mentary Video File 1). The EEG waveform, IMFs, Fourier 
power spectrum, and Hilbert power spectrum were also 
displayed on the GUI. The HHT analysis was performed, 
and the GUI was updated every 8  s. The instantaneous 
frequencies, as well as the amplitudes, were automatically 
saved to the PC.

Statistical analysis
Continuous variables are reported as mean ± standard 
deviation (SD) or median and interquartile range (IQR), 

Fig. 2 A representative example of empirical mode decomposition. The EEG signal is the same as that in Fig. 1. The signal is decomposed into five IMFs 
and a residual

 



Page 5 of 11Obata et al. BMC Anesthesiology          (2023) 23:125 

and categorical variables as proportions. All EEG-related 
data were obtained from our EEG analyzer and HHT 
analyzer as tsv files. The files were opened in Microsoft 
Excel (Microsoft Office 2019, Microsoft Corporation, 
Redmond, WA, USA) and saved as xlsx files. The files 
were then transferred to GraphPad Prism vision 9.4.1 
(GraphPad Software, San Diego, CA, USA) to perform 
part of the statistical analysis. The Wilcoxon matched-
pairs signed rank test was used to compare changes in 
various EEG parameters between the first and last time 
points of the induction, maintenance, and emergence 
phases.

Gaussian process regression (GPR), supported by the 
Gaussian framework GPy (ver. 1.9.8) [17] in the Python 
programming language (ver. 3.6), was applied for the 
regression analysis between BIS and HHT_IF. GPR was 
performed in Python’s Anaconda Navigator (ver. 1.9.7, 
Anaconda, Inc., Austin, TX, USA) using the Jupyter 
Notebook environment (ver. 1.0.0, Project Jupyter; sam-
ple program code is shown in Supplementary Digital 
Document 2: the Jupyter Notebook Python code for GPR 
with a combination of Periodic Exponential kernel and 
Matern 32 kernel to determine the relationship between 
HHT_IF and BIS measured using Python’s GPy module). 
The regression curve was created using the posterior pre-
dictive distribution of the mean values obtained from 20 
patients, and the quality of the curve fitting was assessed 
using the data obtained from the other ten patients. Root 
mean square error (RMSE) and coefficients of determina-
tion (R2) were calculated as estimators of the regression 
analyses. P < 0.05 was considered statistically significant.

Results
We collected and analyzed EEG data from 30 patients. 
The patients’ demographics and clinical characteristics 
are summarized in Table  1. No patients had an atrial 
pacemaker or any known cerebrovascular disease. A 
forced-air-warming blanket was not placed on the fore-
head and the body temperature was maintained within 
the normal range in all patients.

The time-course changes in the instantaneous fre-
quency in the induction, maintenance, and emergence 
phases obtained from IMF1, IMF2, IMF3, IMF4, IMF5, 
and IMF6 are shown in Fig. 4. Additionally, the median 
and IQR of the instantaneous frequencies in IMF1 to 
IMF6 at the first and last time points of the three phases 
are shown in Table  2. The highest frequency compo-
nents were extracted in IMF1, with the frequency then 
being lower in order from IMF1 to IMF6. At the induc-
tion phase, just before the propofol was administered, 
the frequency range of beta oscillations (13–25  Hz) 
was detected in IMF1 and IMF2, and the frequency 
range of theta oscillations (4–7  Hz) was detected in 
IMF4, IMF5, and IMF6. Then, after loss of conscious-
ness, the frequency range of alpha oscillations (8–12 Hz) 
was detected in IMF2, and continued to be detected in 

Table 1 Demographic data and clinical characteristics of the 
patients
Variables n = 30
Age [y.o.] 45 (36, 56)

Gender Male: 9 (30%); 
Female: 21 
(70%)

Height [cm] 161 (156, 168)

Weight [kg] 58 (51, 68)

BMI [kg/m2] 22.0 (20.0, 
25.2)

ASA-PS 1: 17 (56.7%); 
2: 12 (40.0%); 
3: 1(3.3%)

Comorbidities

 Hypertension 5 (16.7%)

 Bronchial asthma 3 (10.0%)

 Rheumatoid arthritis 1 (3.3%)

 None 21 (70.0%)

Duration of anesthesia [min] 158 (112, 205)

Duration of surgery [min] 97 (60, 144)

Surgical procedures

 Laparoscopic abdominal surgery 13 (43.3%)

 Breast surgery 5 (16.7%)

 Bone and joint surgery 5 (16.7%)

 Transurethral ureterolithotripsy 3 (10.0%)

 Otorhinolaryngological surgery 2 (6.7%)

 Others 2 (6.7%)
Data are expressed as median (interquartile range) or counts (percentage).

BMI: body mass index; ASA-PS: American Society of Anesthesiologists physical 
status.

Fig. 3 HHT analyzer. This figure shows the graphical user interface of the 
HHT analyzer. The upper half of the window shows the original EEG signal 
and its IMFs. The lower half windows show the power spectrums analyzed 
using a fast Fourier transform (left) and a Hilbert–Huang transform (mid-
dle). In addition, the Hilbert spectrogram is shown in the lower right
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the maintenance phase. The frequency decreased from 
25.4 (IQR 23.9, 27.2) Hz to 13.1 (11.2, 14.0) Hz in IMF1 
(p < 0.001), from 16.2 (14.1, 17.1) Hz to 10.3 (9.0, 11.5) Hz 
in IMF2 (p < 0.001), from 11.3 (9.5, 12.8) Hz to 7.9 (7.2, 
9.0) Hz in IMF3 (p < 0.001), from 7.9 (6.2, 9.6) Hz to 6.0 
(4.8, 7.3) Hz in IMF4 (p = 0.02), and from 5.6 (2.8, 7.6) 
Hz to 3.6 (1.8, 5.5) Hz in IMF6 (p = 0.05). No significant 
changes in frequency were observed in IMF5 (p = 0.11).

At the emergence phase, the frequency increased 
from 14.3 (12.0, 16.2) Hz to 27.2 (24.9, 27.9) Hz in IMF1 

(p < 0.001), from 10.8 (9.9, 12.2) Hz to 19.0 (17.1, 20.1) Hz 
in IMF2 (p < 0.001), from 8.7 (7.4, 9.2) Hz to 13.6 (12.3, 
15.1) Hz in IMF3 (p < 0.001), from 6.9 (5.2, 8.0) Hz to 
10.4 (9.3, 11.5) Hz in IMF4 (p < 0.001), from 5.7 (3.0, 7.5) 
Hz to 7.8 (5.9, 8.7) Hz in IMF5 (p = 0.002), and from 4.3 
(2.8, 5.2) Hz to 7.1 (5.2, 8.0) Hz in IMF6 (p < 0.001). The 
frequency range of beta oscillations was seen in IMF1, 
IMF2, and IMF3.

Figure 5 shows the time-course changes in BIS, SEF95, 
and EMGlow at the three phases. BIS decreased from 95 

Fig. 4 Instantaneous frequencies during induction, maintenance, and emergence phases. The EEG signals of 30 patients were analyzed, and the instan-
taneous frequencies (HHT_IF) of each IMF were calculated. Each dot and error bar indicate the median and interquartile range of the HHT_IF. The region 
shaded in light blue indicates the frequency range of 8–12 Hz (alpha oscillations). *: p < 0.05; **: p < 0.01; ***: p < 0.001
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(90, 97) to 43 (40, 53) over the induction phase (p < 0.001), 
was maintained at around 40 during the maintenance 
phase, and increased from 59 (53, 62) to 90 (81, 95) in the 
emergence phase (p < 0.001). SEF95 showed a wide vari-
ability and no significant changes in the induction phase 
(p = 0.14), then increased from 16.6 (15.7, 19.0) Hz to 
27.3 (25.0, 28.7) Hz in the emergence phase (p < 0.001). 
EMGlow decreased from 44.9 (43.1, 50.6) dB to 27.5 
(26.7, 28.7) dB in the induction phase (p < 0.001), and 
increased from 29.9 (28.0, 33.5) dB to 50.8 (47.7, 55.7) dB 
in the emergence phase (p < 0.001).

According to the characteristics of the IMFs, we chose 
the instantaneous frequencies in IMF2 as candidates for 
GPR. The relationship between BIS and HHT_IF in the 
emergence phase is shown in Fig. 6. This GPR model was 
created using the data obtained from 20 patients. Figure 7 

shows the quality of the curve fitting assessed using the 
data obtained from the other 10 patients. RMSE and R2 
ranged from 4.69 to 9.68 and 0.39 to 0.83, respectively.

Discussion
In the present study, we introduced the HHT analyzer 
and applied it to analysis of EEG data acquired during 
propofol anesthesia. The most important finding of this 
study is that the HHT-derived instantaneous frequencies 
can identify changes in EEG signals during induction of 
and emergence from general anesthesia. Furthermore, 
the HHT_IF showed strong associations with the BIS 
value. Our results suggest that these IMFs extract the 
main characteristics of the EEG signals. It means that our 
HHT analyzer has the potential to be a monitor of the 
action of anesthesia.

Table 2 The instantaneous frequencies in IMF1 to IMF6 at the first and last time points of the three phases
[Hz]

IMF No. Induction Maintenance Emergence

First time point Last time point First time point Last time point First time point Last time point
IMF1 25.4(23.9, 27.2) 13.1(11.2,14.0)*** 13.3(11.4, 15.4) 13.4(12.2, 15.1) 14.3(12.0, 16.2) 27.2(24.9, 27.9)***

IMF2 16.2(14.1, 17.1) 10.3(9.0, 11.5)*** 10.2(9.4, 11.2) 9.9(9.0, 11.4) 10.8(9.9, 12.2) 19.0(17.1, 20.1)***

IMF3 11.3(9.5, 12.8) 7.9(7.2, 9.0)*** 8.2(7.0, 9.3) 8.4(7.6, 9.1) 8.7(7.4, 9.2) 13.6(12.3, 15.1)***

IMF4 7.9(6.2, 9.6) 6.0(4.8, 7.3)* 6.7(4.4, 7.7) 6.9(5.7, 8.1) 6.9(5.2, 8.0) 10.4(9.3, 11.5)***

IMF5 6.5(2.6, 8.1) 5.2(3.8, 6.1) 4.9(3.0, 6.3) 5.3(3.2, 6.2) 5.7(3.0, 7.5) 7.8(5.9, 8.7)**

IMF6 5.6(2.8, 7.6) 3.6(1.8, 5.5)* 2.6(1.3, 4.7) 4.4(2.5, 5.7) 4.3(2.8, 5.2) 7.1(5.2, 8.0)***
Data are expressed as median (interquartile range). *: p < 0.05; **: p < 0.01; ***: p < 0.001

Fig. 5 BIS, SEF95, and EMGlow during induction, maintenance, and emergence phases. The dots and error bars indicate the median and interquartile 
ranges of BIS (red), SEF95 (blue), and EMGlow (green). ***: p < 0.001
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Monitoring of anesthesia with the BIS involves an elec-
troencephalographic monitor that displays a processed 
dimensionless number between 0 and 100 [18]. BIS has 
been extensively studied and is now widely accepted as 
an index of the depth of anesthesia [19]. However, BIS 
is showing just a ‘number’ and using proprietary algo-
rithms. BIS monitoring assumes that the same BIS value 
defines the same level of unconsciousness for all anes-
thetics, and the BIS value itself does not indicate any 
electroencephalographic information. On the other hand, 
raw EEG has limited use in the measurement of depth of 
anesthesia because the majority of clinicians do not have 
the time nor the skill to interpret the complexity of the 
raw EEG data [20]. Our study suggests that HHT analy-
sis and the instantaneous frequencies in IMFs may help 
clinicians to interpret the EEG patterns which indicate 
the states such as wakefulness, light anesthesia, and deep 
anesthesia.

Although the complete algorithm used to estimate BIS 
value is a trade secret, the Fourier transform is involved 
in the algorithm to deconstruct the EEG signals into indi-
vidual sine waves of differing amplitude and frequency 
[10]. The Fourier transform assumes that the signal is 
stationary within the short window periods. However, 
EEG is usually nonstationary, and the Fourier transform 
may not accurately exhibit the frequency band of the 
EEG signals. Moreover, a major limitation of the Fou-
rier transform is the trade-off relationship between time 
and frequency resolutions [11]. This might be one of the 
reasons why a pure Fourier transform fails to assess the 
depth of anesthesia. In fact, our study shows that SEF95, 
which is a parameter directly derived from the power 
spectrum of the Fourier transform, does not identify 
the change in EEG during induction of anesthesia. In 
contrast, the BIS and the HHT_IF do demonstrate the 

change in EEG during induction. Compared to the clas-
sic Fourier transform, the advantage of HHT is good time 
and frequency resolutions. Also, HHT can be applied 
nonlinear and nonstationary data without any assump-
tions that Fourier transform requires.

To overcome some of the limitations of the Fourier 
analysis, the multitaper method was introduced [21]. Pur-
don et al. recorded high-density EEGs in young subjects 
during gradual induction of and emergence from uncon-
sciousness with propofol, and computed spectrograms 
using the multitaper method [22]. During induction, the 
median frequency decreased from 23.1 to 12.0  Hz, and 
during emergence, the median frequency increased from 
11.8 to 21.9 Hz in the transition period after the return of 
consciousness. These changes in frequencies are similar 
but slightly lower than our results for the instantaneous 

Fig. 7 The quality of curve fitting for 10 individual patients. The regression 
line was obtained from the Gaussian process regression shown in Fig. 6. 
Each panel shows a scatter plot showing the relationship between BIS and 
HHT_IF in an individual patient. Root mean square error (RMSE) and coef-
ficient of determination (R2) are shown in the upper left corners

 

Fig. 6 Relationship between BIS and HHT_IF. Each of the 20 patients had 
50 data points during emergence from anesthesia and each data point is 
indicated by a dot, giving a total of 1000 points. The predicted mean and 
68% credible interval for Gaussian process regression are depicted in blue
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frequencies in IMF1. This difference might reflect the 
characteristics of EMD, which decomposes the EEG sig-
nal into IMFs in order of high to low frequencies.

The HHT has been used for frequency analysis in 
various fields, including motion capture data, electric-
ity demand spectral analysis, and financial data analysis 
[23–25]. Some studies have used the HHT to analyze 
EEG signals during general anesthesia. Compared to 
these studies, the novelty of our study is that we focused 
on the dynamic changes of the instantaneous frequen-
cies in each IMF throughout the anesthesia. We chose 
the number of IMF to be six so that all spectral frequency 
bands are assigned to any IMF. The high frequency bands 
are extracted in IMF1 and IMF2. Whereas the theta and 
delta oscillations are extracted in IMF4, IMF5, and IMF6.

Liu et al. demonstrated HHT analysis of EEG spectro-
grams under propofol anesthesia [11]. They showed that 
the dominant power was located in the delta (1–4  Hz) 
and alpha (8–12  Hz) bands for the unconsciousness 
period, and below 4  Hz during the awake state. How-
ever, their result concerning the dominant power dur-
ing the awake state is inconsistent with previous reports. 
The typical EEG pattern in the awake state involves low-
amplitude and high-frequency waves characterized by 
beta and gamma oscillations [26]. Our results support 
the fact that IMF1 and IMF2 capture these beta oscilla-
tions during the awake state.

Shalbaf et al. introduced a novel index named the Hil-
bert–Huang weighted regional frequency (HHWRF) and 
compared it with BIS values during propofol sedation in 
a small number of volunteers [27]. They observed a high 
correlation between HHWRF and BIS. Their original 
index, HHWRF, includes the summation of all instan-
taneous frequencies and amplitudes in all IMFs. As an 
alternative, we focus on each IMF as an extracted feature 
of the EEG. IMF1 and IMF2 are suitable for detecting the 
change in EEG during induction and emergence from 
anesthesia, and IMF2 also extracts the alpha oscillation 
during unconsciousness.

From the physiological point of view, the EEG is show-
ing the net summation of microscopic currents pro-
duced in the cortex. Millions of postsynaptic potentials 
are asynchronously firing all over the cortex, summing to 
create a complicated signal. Higher cortical function is 
usually associated with desynchronization as neurons act 
more independently. Whereas anesthesia is associated 
with increasing cortical synchrony [13]. The synchrony is 
influenced by neuronal circuit loops involving the inter-
action of cortical and subcortical structures [26]. EEG 
patterns also reflect this interconnection. We think that 
the HHT seems to be a process to understand the com-
plex brain activities by decomposing the EEG signal into 
several IMFs.

Propofol acts mainly as a positive allosteric modulator 
of γ-aminobutyric acid type A receptors in the brain [26]. 
Under propofol anesthesia, EEG is characterized by fron-
tal alpha oscillations. Recently, increasing attention has 
been paid to the frontal alpha power in the clinical set-
ting. Shao et al. showed that lower frontal alpha power 
is associated with a higher propensity for burst suppres-
sion and a potentially higher risk of postoperative neuro-
cognitive disorders [28]. However, no EEG monitor can 
focus on and pick out the alpha oscillation. Our study 
demonstrated the alpha oscillations during the mainte-
nance phase in the form of IMF2, and this IMF might be 
valuable for assessing the depth of anesthesia through its 
depiction of the alpha oscillation.

Our study has several limitations. First, we analyzed 
EEG from only young and middle-aged patients. It is 
well known that the EEG amplitude, as well as the alpha 
power, decreases with aging [29]. Further study is needed 
to investigate how our HHT analyzer works in elderly 
patients. Second, all patients received not only propo-
fol, but also remifentanil, fentanyl, and rocuronium. All 
anesthetic agents affect the EEG signals and BIS value 
[30]. However, these anesthetic agents are usually used 
together in the clinical setting.

Conclusions
We developed the HHT analyzer and analyzed fron-
tal EEG during propofol anesthesia. The HHT analyzer 
decomposes the EEG signal into six IMFs. The instan-
taneous frequencies in IMF1 and IMF2 identify the 
changes in EEG characteristics that occur during induc-
tion and emergence from general anesthesia. Further-
more, IMF2 is suitable for depicting the alpha oscillation. 
Our study suggests that the HHT is useful for monitoring 
the depth of anesthesia.
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