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Abstract 

Background The benefit of remote ischemia preconditioning (RIPreC) in pediatric cardiac surgery is unclear. The 
objective of this systematic review and meta-analysis was to examine the effectiveness of RIPreC in reducing the dura-
tion of mechanical ventilation and intensive care unit (ICU) length of stay after pediatric cardiac surgery.

Methods We searched PubMed, EMBASE and the Cochrane Library from inception to December 31, 2022. Ran-
domized controlled trials comparing RIPreC versus control in children undergoing cardiac surgery were included. 
The risk of bias of included studies was assessed using the Risk of Bias 2 (RoB 2) tool. The outcomes of interest were 
postoperative duration of mechanical ventilation and ICU length of stay. We conducted random-effects meta-analysis 
to calculate weighted mean difference (WMD) with 95% confidence interval (CI) for the outcomes of interest. We 
performed sensitivity analysis to examine the influence of intraoperative propofol use.

Results Thirteen trials enrolling 1,352 children were included. Meta-analyses of all trials showed that RIPreC did not 
reduce postoperative duration of mechanical ventilation (WMD -5.35 h, 95% CI -12.12–1.42) but reduced postopera-
tive ICU length of stay (WMD -11.48 h, 95% CI -20.96– -2.01). When only trials using propofol-free anesthesia were 
included, both mechanical ventilation duration (WMD -2.16 h, 95% CI -3.87– -0.45) and ICU length of stay (WMD 
-7.41 h, 95% CI -14.77– -0.05) were reduced by RIPreC. The overall quality of evidence was moderate to low.

Conclusions The effects of RIPreC on clinical outcomes after pediatric cardiac surgery were inconsistent, but both 
postoperative mechanical ventilation duration and ICU length of stay were reduced in the subgroup of children not 
exposed to propofol. These results suggested a possible interaction effect of propofol. More studies with adequate 
sample size and without intraoperative propofol use are needed to define the role of RIPreC in pediatric cardiac 
surgery.
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Background
Remote ischemic preconditioning (RIPreC) has long 
been viewed as an attractive approach to mitigate the 
ischemia–reperfusion injury to heart and other organs 
induced by cardiopulmonary bypass. Despite some 
beneficial effects in terms of reductions in biomark-
ers of organ injury [1], most randomized controlled tri-
als (RCT) failed to show a benefit of RIPreC on clinical 
outcomes in patients undergoing cardiac surgery [2, 3]. 
The most frequently discussed confounding factor is the 
concomitant use of intravenous anesthetic propofol [4], 
which could interfere and inhibit RIPreC’s protective 
effects [5, 6]. In addition, advanced age and comorbidities 
such as diabetes and hypertension were also reported to 
influence RIPreC-induced organ protection [7, 8]. Taking 

all these into consideration, we hypothesized that RIPreC 
may bring benefit on clinical outcomes in children receiv-
ing cardiac surgery under propofol-free anesthesia.

Previous meta-analyses did not show significant car-
dioprotective effect of RIPreC in pediatric cardiac sur-
gery [9, 10]. However, the included RCTs had small 
sample sizes, and the confounding effect of concomitant 
propofol use was not explored. Recently, several new tri-
als have been published; the information size regarding 
this issue has increased markedly. We therefore con-
ducted an updated meta-analysis focusing on the effects 
of RIPreC on clinical outcomes in relation to intraop-
erative propofol use. The objective of this systematic 
review and meta-analysis was to examine the effective-
ness of RIPreC in reducing the duration of mechanical 

Fig. 1 PRISMA flow diagram of the study
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ventilation and intensive care unit (ICU) length of stay 
after pediatric cardiac surgery, and to explore the impact 
of propofol on the effectiveness of RIPreC.

Methods
Literature search and study selection
This study was conducted and reported according to the 
Cochrane handbook and the PRISMA statement [11, 12]. 
The PRISMA 2020 checklist is provided in Supplemen-
tary Table 1. The study protocol was developed a priori 
and was not changed during the study, but was not regis-
tered. We searched PubMed, EMBASE via Ovid and the 
Cochrane Library via Ovid from inception to December 
31, 2022 using free-text representing RIPreC, cardiac 
surgery and children. The keywords used in our search 
of the PubMed database were (cardiac OR heart) AND 

(surgery OR operation OR preoperative OR intraop-
erative OR perioperative) AND (preconditioning) AND 
 (child* OR paediatric OR pediatric OR  infant* OR young 
OR  neonate*) AND (RCT OR randomized controlled trial 
OR  Random*). The full search strategies for all databases 
are provided in detail (Supplementary Table  2). RCTs 
that met the following criteria were included: [1] popula-
tion: children (< 18 yrs) undergoing any cardiac surgery; 
[2] intervention: standard care plus RIPreC vs standard 
care with/without a sham procedure; [3] outcome: post-
operative mechanical ventilation duration, intensive 
care unit (ICU) length of stay, or both, was reported. 
Two reviewers (JL, XW) screened each record and each 
report retrieved, whether they worked independently. 
A third reviewer (SW) was consulted when there was 
disagreement.

Table 1 Main characteristics of included trials

Study Country No 
of
pts

Age (RIPreC / 
control)

Type of heart 
disease

Timing of RIPreC RIPreC site, 
duration 
(cycles × min) 
and pressure

Propofol use Risk of bias

Cheung 2006 [17] Canada 37 0.9 / 2.2 years CHD 5–10 min before 
CPB

LL, 4 × 5, 
15 mmHg > SAP

No Unclear

Zhou 2010 [18] China 60 5.4 / 5.1 months VSD 24 h and 1 h before 
surgery

UL, 3 × 5, 
240 mmHg

Unknown Unclear

Luo 2011[19] China 40 2.2 / 3.1 years VSD Immediately after 
anesthesia induc-
tion

LL, 3 × 5, 
200 mmHg

No Unclear

Lee 2012 [20] Korea 55 3.7 / 3.4 months VSD  ~ 10 min after 
anesthesia induc-
tion

LL, 4 × 5, 
30 mmHg > SAP

No Unclear

Pavione 2012 [21] Brazil 22 5.8 / 6.1 months CHD 24 h before surgery LL, 4 × 5, 
15 mmHg > SAP

No Unclear

Pedersen 2012 [22] Denmark 105 1.0 / 0.9 years CHD Immediately after 
anesthesia induc-
tion

LL, 4 × 5, 
40 mmHg > SAP

Yes High

Jones 2013 [23] Australia 39 8.1 / 5.5 days TGA, HLHS After anesthesia 
induction

LL, 4 × 5, 
15 mmHg > SAP

No Unclear

Pepe 2013 [24] Australia 40 7.6 / 7.4 months ToF Immediately after 
anesthesia induc-
tion

LL, 4 × 5, 
30 mmHg > SAP

No Unclear

McCrindle 2014 
[25]

Canada 299 2.2 / 3.1 years CHD During anesthesia 
induction

LL, 4 × 5, 
15 mmHg > SAP

Yes Unclear

Guerra 2017 [26] Canada 45 7.5 / 13.7 days CHD 24–48 h before 
surgery and intra-
operatively before 
CPB

LL, 4 × 5, 
20 mmHg > SAP

No Low

Wu 2018 [27] China 112 10.5 / 11.2 months ToF After anesthesia, 
55–65 min before 
CPB

LL, 3 × 5, 
30 mmHg > SAP

No Low

Kang 2018 [28] China 449 3.3 / 2.6 years CHD 12 h before surgery LL, 4 × 5, 
30 mmHg > SAP

Unknown High

Rodriguez 2020 
[29]

UK 49 19 / 9 months CHD 15–20 h before 
surgery and 
after anaesthesia 
induction prior to 
surgery

UL or LL, 3 × 5, 
20 mmHg > SAP

Unknown Low
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Data extraction and quality assessment
Two reviewers (JL, XW) collected data from each report 
independently. Main characteristics of trial design, 
patients, interventions, and outcomes in each eligible 
RCT were recorded. Important missing or unclear data 
were obtained or confirmed by contacting the study 
investigators using emails. The outcomes of interest of 
this study were postoperative mechanical ventilation 
duration and ICU length of stay (expressed in hours). 
They were chosen as measures of effectiveness because 
prolonged mechanical ventilation and ICU stay are usu-
ally consequences of cardiopulmonary dysfunction or 
slower recovery after cardiac surgery and because they 
are powerful predictors of both short- and long-term 

mortality [13, 14]. All outcome data expressed in other 
units were converted to hours. The methodological qual-
ity of included RCTs was assessed using the Risk of Bias 2 
(RoB 2) tool. [12] by two independent reviewers.

Statistical analysis
Using Review Manager 5 (Cochrane Collaboration, 
Copenhagen, Denmark), we conducted random-effects 
meta-analysis to calculate weighted mean difference 
(WMD) with 95% confidence interval (CI) for the out-
comes of interest. Where data were reported as medians, 
they were converted to means and standard deviations 
[15]. Heterogeneity was assessed using chi-square test, 
and was quantified by  I2 statistic. Publication bias was 

Fig. 2 Risk of bias assessment of included RCTs on the outcomes duration of mechanical ventilation (A) and length of ICU stay (B). Domains: D1: 
Bias arising from the randomization process. D2: Bias due to deviations from intended intervention. D3: Bias due to missing outcome data. D4: Bias 
in measurement of the outcome. D5: Bias in selection of the reported result. Judgement: -: Some concerns, +: Low.

Fig. 3 Forest plot of the effect of RIPreC on postoperative duration of mechanical ventilation (overall cohort)
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visually assessed by inspecting funnel plots and statisti-
cally tested using Egger’s test. TSA was conducted using 
a specific software (User Manual for TSA; Copenha-
gen Trial Unit 2011, Copenhagen, Denmark) [16]. Our 
assumptions included two-sided testing, type I error 
of 5%, and power of 80%. A priori planned sensitivity 
analysis was conducted by including only RCTs with no 
intraoperative propofol use. Unless an anesthetic regi-
men without propofol was detailed, it was assumed that 
propofol was administered. We used GRADE (Grading 
of Recommendations Assessment, Development and 
Evaluation) system for evaluating the overall quality of 

evidence. The quality of evidence is assessed based on 
factors including the study design, the risk of bias, con-
sistency, directness and precision.

Results
Literature search findings
Figure 1 is a flow diagram of the study and summarizes 
the process of trial selection. Thirteen eligible RCTs were 
identified that had enrolled 1,352 children randomly 
assigned to either RIPreC or control groups [17–29]. The 
main characteristics and methodological quality of these 
trials are summarized in Table 1 and Fig. 2. The studies 

Fig. 4 Trial sequential analysis plot of postoperative duration of mechanical ventilation (overall cohort). Trial sequential analysis of 11 RCTs that 
compared RIPreC versus control on postoperative duration of mechanical ventilation. The cumulative z curve did not cross the conventional 
boundary. The information size was too small to produce the inner wedge futility area, indicating the current evidence is inconclusive. A required 
information size of 8,174 patients was calculated using α = 0.05 (two sided), β = 0.20 (power 80%) and the mean difference generated in the 
conventional meta-analysis

Fig. 5 Forest plot of the effect of RIPreC on postoperative duration of mechanical ventilation (sensitivity analysis)
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that were excluded from this review and the reasons were 
provided in Supplementary Table 3.

Duration of mechanical ventilation
Twelve RCTs reported postoperative mechanical ventila-
tion duration in a total of 1,247 children. Overall, RIPreC 
did not reduced the duration of mechanical duration 
(WMD -5.35  h, 95% CI -12.12–1.42;  I2 = 92%; Fig.  3). 
TSA suggested the current evidence was inconclusive 
and the required information size to draw a firm conclu-
sion would be 8,174 (Fig.  4). In the sensitivity analysis 

including only RCTs with no intraoperative propofol use, 
RIPreC significantly reduced the duration of postopera-
tive mechanical duration (WMD -2.16 h, 95% CI -3.87– 
-0.45;  I2 = 0%; Fig. 5). Meanwhile a marked reduction in 
study heterogeneity was observed. TSA again suggested 
the result was inconclusive, but the required information 
size reduced to 1,001 (Fig. 6).

ICU length of stay
Twelve RCTs enrolling a total of 1,313 children reported 
postoperative ICU length of stay. Overall, RIPreC 

Fig. 6 Trial sequential analysis plot of postoperative duration of mechanical ventilation (sensitivity analysis). Trial sequential analysis of 8 RCTs that 
did not use propofol anesthesia on postoperative duration of mechanical ventilation. The cumulative z curve crossed the conventional boundary 
but not the trial sequential monitoring boundary for benefit, indicating the current evidence is inconclusive. A required information size of 1,001 
patients was calculated using α = 0.05 (two sided), β = 0.20 (power 80%) and the mean difference generated in the conventional meta-analysis

Fig. 7 Forest plot of the effect of RIPreC on postoperative ICU length of stay (overall cohort)
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reduced ICU length of stay (WMD -11.48  h, 95% CI 
-20.96 – -2.01;  I2 = 91%; Fig. 7). TSA suggested the cur-
rent evidence was inconclusive and the required infor-
mation size to draw a firm conclusion would be 3,674 
(Fig. 8). In the sensitivity analysis including only RCTs 
with no intraoperative propofol use, RIPreC signifi-
cantly reduced postoperative ICU length of stay (WMD 
-7.41 h, 95% CI -14.77– -0.05;  I2 = 38%; Fig. 9). A mark-
edly reduced heterogeneity was also seen. TSA again 
suggested the result was inconclusive, but the required 
information size reduced to 1,417, Fig. 10).

Publication bias and GRADE evidence profile
No evidence of publication bias was detected (Fig.  11). 
The GRADE evidence profile for the outcomes is shown 
in Table 2.

Discussion
In this meta-analysis of 13 RCTs and 1,352 children, the 
effects of RIPreC on decreasing postoperative mechani-
cal ventilation duration and ICU length of stay were 
inconsistent in the overall cohort. However, we found sig-
nificant improvement in these outcomes when only trials 

Fig. 8 Trial sequential analysis plot of postoperative ICU length of stay (overall cohort). Trial sequential analysis of 11 RCTs that compared RIPreC 
versus control on postoperative ICU length of stay. The cumulative z curve crossed the conventional boundary but not the trial sequential 
monitoring boundary for benefit, indicating the current evidence is inconclusive. A required information size of 3,674 patients was calculated using 
α = 0.05 (two sided), β = 0.20 (power 80%) and the mean difference generated in the conventional meta-analysis

Fig. 9 Forest plot of the effect of RIPreC on postoperative ICU length of stay (sensitivity analysis)
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using propofol-free anesthesia were analyzed, and the 
heterogeneity among studies were substantially reduced. 
Although a firm conclusion could not be reached due 
to inadequate information size, our findings support 
the idea that propofol may interfere with the protective 
effects of RIPreC.

The mechanism of RIPreC-induced organ protection 
is complex and involves both humoral and sensory-
neuronal pathways [30]. Several theories explaining 
how propofol might influence these pathways have 

been proposed. Propofol has been reported to abro-
gates myocardial STAT 5 phosphorylation, impair sen-
sory fiber activation, and interfere with central nervous 
control of cardiac vagal nerves [31]. All these are 
important for the cardioprotection by RIPreC. Another 
theory is that the anti-inflammatory and antioxidant 
properties of propofol could obscure the effects of 
RIPreC. In congruent with these theories, RIPreC has 
been shown to reduce morbidity and mortality after 
adult cardiac surgery when combined with volatile 

Fig. 10 Trial sequential analysis plot of postoperative ICU length of stay (sensitivity analysis). Trial sequential analysis of 7 RCTs that did not use 
propofol anesthesia on postoperative ICU length of stay. The cumulative z curve crossed the conventional boundary but not the trial sequential 
monitoring boundary for benefit, indicating the current evidence is inconclusive. A required information size of 1,417 patients was calculated using 
α = 0.05 (two sided), β = 0.20 (power 80%) and the mean difference generated in the conventional meta-analysis

Fig. 11 Funnel plots for assessment of publication bias in mechanical ventilation duration (A) and ICU length of stay (B)
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anesthesia but not total intravenous (propofol) anes-
thesia in meta-analyses [32, 33].

The current study had several limitations. First, most 
included trials had a small sample size, a short follow-
up duration, and were only powered to detect differ-
ences in surrogate endpoints such as blood biomarkers. 
Postoperative mortality and major complications had 
low incidence and were inconsistently reported. We 
could not evaluate the effects of RIPreC on these impor-
tant outcomes. Second, substantial heterogeneity was 
noted across the included trials with regard to the age 
of children, the type and severity of heart disease, and 
the protocol of RIPreC. These factors contributed to the 
high variance in outcome data distribution. We therefore 
used random-effects model for this meta-analysis. We 
also performed a post hoc analysis by using standardized 
mean difference as the effect measure, and the result 
was consistent with the primary analysis. Third, we were 
unable to perform statistical test for the possible interac-
tion effect of propofol because the number of trials were 
limited and because the proportions of propofol use in 
some trials were unknown. Thus, the effect of propofol 
could not be confirmed. Fourth, the protocol of this sys-
tematic review and meta-analysis was not registered a 
priori, and it is best to use a validated search filter For 
RCTs search.

Despite these limitations, our study provides addi-
tional evidence that RIPreC may show clinically signifi-
cant effects in cardiac surgery when propofol anesthesia 
is not used. The findings of this study provide insights 
for the design of future researches. Above all, consider-
ing the possible confounding effect of propofol and the 
realizability of required sample size calculated by TSA, 
it is mandatory for future trials to avoid propofol as 
part of the anesthesia regimen. In addition, future tri-
als should be adequately powered for clinically impor-
tant outcomes such as ICU length of stay, rather than 
merely surrogate outcomes. Since the incidence of 
postoperative short-term mortality and major compli-
cations are low, longer follow-up durations are needed 
to evaluate the long-term effects of RIPreC on pediatric 
cardiac surgery.

Conclusions
RIPreC does not reduce postoperative mechanical ven-
tilation duration or ICU length of stay after pediatric 
cardiac surgery. In trials that did not use propofol, sig-
nificant reductions in mechanical ventilation duration 
and ICU length of stay were observed, suggesting that 
propofol may interfere with the protective effects of 
RIPreC. Future trials with adequate power are needed 
to evaluate the independent role of RIPreC in pediatric 
cardiac surgery under propofol-free anesthesia.
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