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Abstract 

Background  There is no predictive tool for type 2 diabetes mellitus (T2DM) patients with acute kidney injury (AKI). 
Our study aimed to establish an effective nomogram model for predicting mortality in T2DM patients with AKI.

Method  Data on T2DM patients with AKI were obtained from the Medical Information Mart for Intensive Care III. 70% 
and 30% of the patients were randomly selected as the training and validation cohorts, respectively. Univariate and 
multivariate logistic regression analyses were used to identify factors associated with death in T2DM patients with 
AKI. Factors significantly associated with survival outcomes were used to construct a nomogram predicting 90-day 
mortality. The nomogram effect was evaluated by receiver operating characteristic curve analysis, Hosmer‒Lemeshow 
test, calibration curve, and decision curve analysis (DCA).

Results  There were 4375 patients in the training cohort and 1879 in the validation cohort. Multivariate logistic 
regression analysis showed that age, BMI, chronic heart failure, coronary artery disease, malignancy, stages of AKI, 
white blood cell count, blood urea nitrogen, arterial partial pressure of oxygen and partial thromboplastin time were 
independent predictors of patient survival. The results showed that the nomogram had a higher area under the curve 
value than the sequential organ failure assessment score and simplified acute physiology score II. The Hosmer‒Leme-
show test and calibration curve suggested that the nomogram had a good calibration effect. The DCA curve showed 
that the nomogram model had good clinical application value.

Conclusion  The nomogram model accurately predicted 90-day mortality in T2DM patients with AKI. It may provide 
assistance for clinical decision-making and treatment, thereby reducing the medical burden.
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Introduction
Type 2 diabetes mellitus (T2DM) is a metabolic disease 
caused by various etiologies leading to dysfunction of 
insulin secretion or action. A study [1] predicted that 
the number of patients with diabetes will gradually 
increase, and the economic burden will also further 
increase. T2DM and diabetes-related complications 
are also major causes of hospitalization, disability, 
and death [2, 3]. Diabetes increases the risk of acute 
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kidney injury (AKI), which can sometimes be regarded 
as an acute complication of diabetes [4]. AKI is a sud-
den renal dysfunction syndrome with a high incidence 
rate and mortality, is common in patients with criti-
cal illness and cardiac surgery and is associated with 
genetic susceptibilities [5–7]. Studies have found that 
AKI affects more than 13 million people per year, 80% 
of patients live in the developing world, and AKI con-
tributes to 1.7  million deaths annually [8, 9]. Several 
studies [10, 11] have found that approximately 50% of 
critically ill patients develop AKI, and 11.0% of patients 
with severe AKI die in intensive care units (ICU). A 
study [12] found that 40% of AKI patients had diabetes. 
In acutely unwell patients with AKI who have under-
lying diabetes, there is a serious risk of medical com-
plications that have significant financial implications. 
Therefore, it is necessary to pay attention to the prog-
nosis of T2DM patients with AKI.

Li et  al. [13] constructed a predictive model for the 
occurrence of AKI in the ICU, and the area under 
curve (AUC) of the AKI prognostic model was 0.716. 
Fan et al. [14] constructed a nomogram to predict the 
risk of AKI in patients with diabetic ketoacidosis in the 
ICU. In these AKI prognostic models, the results in dia-
betes patients were not considered. A study [15] used 
machine learning to find the best model for predicting 
the death of diabetic patients in the ICU, but that study 
did not further explore the prognosis of this model in 
diabetic patients with AKI. Acute physiology chronic 
health evaluation (APACHE) II, simplified acute physi-
ology score (SAPS) III, and sequential organ failure 
assessment (SOFA) scores are commonly used to pre-
dict patient prognosis in the ICU [16–18]. Interestingly, 
how valuable these predictive models will be in T2DM 
patients with AKI. In addition, we aimed to establish a 
nomogram that integrated multiple independent sig-
nificant factors to better predict 90-day mortality in 
T2DM patients with AKI to further provide some help 
for medical decision-making.

Materials and methods
Data source
After relevant training, we obtained access to the Medi-
cal Information Mart for Intensive Care III (MIMIC-III) 
(https://​physi​onet.​org/​conte​nt/​mimic​iii/1.​4/). MIMIC-III 
is a publicly available ICU database that contains data on 
approximately 50,000 patients, including general infor-
mation, clinical information, and related medical insur-
ance data of patients [19]. Access to the database was 
approved by the Institutional Review Boards of Beth 
Israel Deaconess Medical Center (Boston, MA) and the 
Massachusetts Institute of Technology (Cambridge, MA). 

The patient’s information in the database had been stand-
ardized, and the establishment of these data did not affect 
clinical care and was thus exempted from the require-
ment of individual informed consent.

Inclusion and exclusion criteria
There are 58,976 hospitalizations in the MIMIC-III data-
base. The inclusion criteria for this study were as fol-
lows: (1) patients admitted to the ICU for the first time 
and (2) patients with an ICD code for T2DM. The exclu-
sion criteria were: (1) younger than 18 years of age; (2) 
without AKI. For inclusion, the patients had to be diag-
nosed with AKI after entering in ICU, in which the diag-
nosis was based on the kidney disease: improving global 
outcomes guidelines [20]. (3) less than 48 h in the ICU; 
and (4) variables that had missing data for more than 5% 
of the patients. Finally, 6254 patients were included in 
this study. The participants were randomly divided into 
a training cohort (70%) and a validation cohort (30%) 
(Fig. 1).

Data extraction
We extracted data from the database with structured 
query language in PostgreSQL. We mainly extracted 
demographic information, clinical laboratory data and 
related scoring information (Supplementary Table 1).

Statistical analysis
Continuous variable data were expressed as the 
mean ± standard deviation for normal distribution; 
interquartile ranges (IQRs) were used for variables with 
nonnormal distribution. The categorical variables were 
expressed as the total and percentage, and the chi-square 
test was used to evaluate categorical data for two group 
comparisons. Student’s t test was used for comparison 
between two groups of data with normal distribution, 
and Wilcoxon rank-sum test was used for comparison 
between two groups of data with nonnormal distribution. 
Univariate and multivariate logistic regression were used 
to identify predictors of 90-day mortality in the training 
cohort. These predictors were further applied to build a 
nomogram for estimating 90-day mortality. Finally, the 
nomogram was verified using data from the validation 
cohort.

Receiver operating characteristic curve (ROC) analysis, 
the Hosmer‒Lemeshow test, and calibration curves were 
used to evaluate the accuracy of nomogram prediction. 
The clinical value of the nomogram was verified based on 
decision curve analysis (DCA). P < 0.05 was considered 
statistically significant. All statistical analyses were car-
ried out using Stata version 16.0.

https://physionet.org/content/mimiciii/1.4/
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Results
Baseline characteristics
A total of 6254 patients were enrolled and randomly 
allocated to a training cohort (n = 4375) and a valida-
tion cohort (n = 1879) in our study (Fig. 1). The training 
cohort included 1832 (41.9%) females and 2543 (58.1%) 
males with a median age of 69.6 years (IQR = 60.6–
78.3 years) with an average body mass index (BMI) of 
30 (IQR = 25.5–35.2), whereas the validation cohort 
included 799 (42.5%) females and 1080 (57.5%) males 
with a median age of 69.9 years (IQR = 61.1–78.6 years) 
and an average BMI of 29.8 (IQR = 25.4–34.5). Most of 
the patients in the training and validation cohorts were 
white (> 60%). The median length of hospital stay was 2.9 
days (IQR = 1.5–5.3 days) in the training cohort and 3.0 
days (IQR = 1.7–5.4 days) in the validation cohort. The 
30- and 90-day mortality rates in the training cohort and 
validation cohort were 15% (n = 656) and 19% (n = 833) 
and 14% (262) and 18.4% (346), respectively. The 90-day 
mortality rate was selected for further analyses. The base-
line characteristics of the training and validation cohorts 
did not differ significantly (Table 1).

Nomogram construction
Univariate logistic regression analyses showed that 
the significant predictors of 90-day mortality were 

age, BMI, chronic heart failure (CHF), coronary artery 
disease(CAD), hypertension, RRT, malignancy, stage 
of AKI, SOFA score, SAPS II score, white blood cell 
(WBC) count, platelet count, hemoglobin (HGB), 
sodium, phosphate, calcium (Ca), creatinine, blood 
urea nitrogen (Bun), arterial partial pressure of oxy-
gen (PaO2), lactate (Lac) and partial thromboplastin 
time (PTT) in the training group (Table  2). The pre-
dictors differing significantly in the univariate analy-
ses (P < 0.05) were included in a multivariable logistic 
regression model with forward stepwise selection. 
The multivariate analysis showed that the factors pre-
dictive of improved 90-day survival included BMI 
(OR = 0.960, P < 0.001), CAD (OR = 0.494, P < 0.001) 
and PaO2 (OR = 0.997, P < 0.001), whereas risk factors 
included age (OR = 1.031, P < 0.001), CHF (OR = 1.287, 
P = 0.004), malignancy (OR = 1.714, P < 0.001), stage of 
AKI (OR = 1.642, P < 0.001), WBC count (OR = 1.035, 
P < 0.001), PTT (OR = 1.005, P < 0.001) and Bun 
(OR = 1.015, P < 0.001) (Table  3). A nomogram was 
established based on the significant variables identi-
fied in the multivariate analyses (Fig. 2). The nomogram 
showed that BMI had the greatest impact on prognosis, 
followed by age, Bun, PaO2, stages of AKI, WBC count, 
CAD, PTT, malignancy and CHF.

Fig. 1  Flow diagram of the study
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Table 1  Comparisons of demographics between training cohort 
and validation cohort

Abbreviations: BMI Body mass index, CHF Chronic heart failure, CAD Coronary 
artery disease, RRT​ Renal replacement therapy, SOFA Sequential organ failure 
assessment, SAPS Simplified acute physiology score, WBC White blood cell, Bun 
Blood urea nitrogen, HGB Hemoglobin, Ca Calcium, PT Prothrombin time, PTT 
Partial thromboplastin time

Variable Training 
Cohort 
(n = 4375)

Validation 
Cohort 
(n = 1879)

P value

Age (years) 69.6(60.6, 78.3) 69.9(61.1, 78.6) 0.194

Gender, n(%) 0.634

  Male 2543(58.1) 1080(57.5)

  Female 1832(41.9) 799(42.5)

Ethnicity, n(%) 0.040

  White 2886(66) 1292(68.8)

  Black 447(10.2) 194(10.3)

  Asian 84(2.0) 23(1.2)

  Other 958(21.8) 370(19.7)

BMI (kg/m2) 30.0(25.5, 35.2) 29.8(25.4,34.5) 0.108

Comorbidities, n (%)

  CHF 1602(36.6) 685(36.5) 0.903

  CAD 1998(45.7) 859(45.7) 0.973

  Hypertension 2343(53.6) 1014(54.0) 0.765

  RRT​ 174(4.0) 68(3.6) 0.501

  Malignancy 612(14.0) 283(15.1) 0.267

Stages of AKI 0.208

  1 3884(88.8) 1669(88.8)

  2 226(5.2) 112(6.0)

  3 265(6.1) 98(5.2)

SOFA score 4(3, 6) 4(3, 7) 0.362

SAPS II score 37(29, 46) 37(29, 46) 0.396

Laboratory tests

  WBC (× 109/L) 11.3(8.3, 15.1) 11.4(8.2, 14.9) 0.998

  Platelet (× 109/L) 197(145, 262) 195(142, 261) 0.235

  HGB (g/dL) 10.3(9.1, 11.7) 10.4(9.2, 11.8) 0.151

  Potassium (mmol/L) 4.2(3.8, 4.8) 4.2(3.8, 4.7) 0.876

  Sodium (mmol/L) 138(135,140) 138(135,140) 0.445

  Ca 1.1(1.0, 1.2) 1.1(1.0, 1.2) 0.837

  Phosphate (mg/dL) 3.7(3, 4.3) 3.7(3, 4.4) 0.320

  Creatinine (mg/dL) 1.1(0.8, 1.7) 1.1(0.8, 1.7) 0.255

  Bun (mg/dL) 23(16, 38) 22(15, 37) 0.310

  Glucose(mg/dL) 155(123, 201) 156(122, 204) 0.488

  Lactate 1.9(1.2, 2.8) 1.9(1.3, 2.9) 0.140

  PaCO2 (mmHg) 41(36, 48) 41(35, 47) 0.198

  PaO2 (mmHg) 184(96, 311) 188(99, 319) 0.050

  PT (s) 14.6(13.4, 16.2) 14.7(13.4, 16.3) 0.833

  PTT (s) 32.2(27.5, 38.9) 31.7(27.1, 38.9) 0.352

Length of stay (Days) 2.9(1.5, 5.3) 3.0(1.7, 5.4) 0.112

30-days mortality, n (%) 656(15.0) 262(14.0) 0.282

90-days mortality, n (%) 833(19.0) 346(18.4) 0.562

Table 2  Factors independently associated with 90-days 
mortality of T2DM patients with AKI by univariate logistic 
regression analysis in training cohort

Abbreviations: BMI Body mass index, CHF Chronic heart failure, CAD Coronary 
artery disease, RRT​ Renal replacement therapy, WBC White blood cell, Bun Blood 
urea nitrogen, HGB Hemoglobin, Ca Calcium, PT Prothrombin time, PTT Partial 
thromboplastin time

Variables OR (95%CI) P value

Age 1.043(1.035–1.050) < 0.001

Gender 1.151(0.988–1.340) 0.070

Ethnicity 0.955(0.868–1.050) 0.343

BMI 0.954(0.944–0.964) < 0.001

CHF 1.652(1.418–1.925) < 0.001

CAD 0.437(0.372–0.514) < 0.001

Hypertension 0.543(0.466–0.633) < 0.001

RRT​ 1.709(1.217–2.399) 0.002

Malignancy 1.798(1.479–2.187) < 0.001

Stages of AKI 1.590(1.403–1.803) < 0.001

WBC 1.032(1.021–1.045) < 0.001

Platelet 1.001(1.000-1.002) < 0.001

HGB 0.972(0.934–1.011) 0.158

Potassium 0.973(0.882–1.072) 0.578

Sodium 1.026(1.009–1.043) 0.003

Phosphate 1.200(1.135–1.268) < 0.001

Ca 0.106(0.056–0.202) < 0.001

Creatinine 1.155(1.109–1.204) < 0.001

Bun 1.022(1.019–1.026) < 0.001

Glucose 1.000(0.999–1.001) 0.342

Lactate 1.122(1.070–1.177) < 0.001

PaCO2 0.997(0.990–1.003) 0.328

PaO2 0.996(0.995–0.997) < 0.001

PT 1.046(1.034–1.059) < 0.001

PTT 1.007(1.004–1.010) < 0.001

Table 3  Factors independently associated with 90-days 
mortality of T2DM patients with AKI by multivariate logistic 
regression analysis in training cohort

Abbreviations: BMI Body mass index, CHF Chronic heart failure, CAD Coronary 
artery disease, WBC White blood cell, Bun Blood urea nitrogen, PTT Partial 
thromboplastin time

Variables OR (95%CI) P value

Age 1.031(1.023–1.039) < 0.001

BMI 0.960(0.949–0.971) < 0.001

CHF 1.287(1.082–1.532) 0.004

CAD 0.494(0.411–0.594) < 0.001

Malignancy 1.714(1.383–2.124) < 0.001

Stages of AKI 1.642(1.429–1.887) < 0.001

WBC 1.035(1.022–1.048) < 0.001

Bun 1.015(1.012–1.019) < 0.001

PTT 1.005(1.002–1.008) 0.002

PaO2 0.997(0.996–0.998) < 0.001
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Fig. 2  Nomogram predicts 90-day mortality. The total score corresponds to mortality probability at the bottom by summing each value of the 
variable

Fig. 3  ROC curves. The ability of the nomogram, SOFA score and SAPS II score was measured and compared according to the AUC values for 
training and validation cohorts
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Assessment and validation of the nomogram performance
According to the ROC analysis, the AUC value of the 
training cohort was 0.768 (95% CI = 0.751–0.785), 
which showed a significantly higher AUC value than the 
SOFA and SAPS II score systems (Fig. 3). The Hosmer‒
Lemeshow test (χ2 = 11.75, P = 0.302) and calibration 
curves indicated good calibration of the model in the 
training cohort (Fig.  4). The AUC value of the valida-
tion was 0.779 (95% CI = 0.754–0.804), which showed 
significantly higher AUC values than the SOFA and 
SAPS II score systems (Fig. 3). The Hosmer‒Lemeshow 
test (χ2 = 11.22, P = 0.478) and calibration curves also 
indicated good calibration of the model in the valida-
tion cohorts (Fig. 4). The DCA curves showed that the 

nomogram had favorable clinical validity in predicting 
90-day mortality (Fig. 5).

Discussion
Studies have shown that diabetes is an independent risk 
factor for the incidence of AKI [21, 22]. AKI was signifi-
cantly associated with increased mortality in critically 
ill patients [23]. We attempted to establish a convenient 
and objective scoring model to predict the risk of 90-day 
mortality in T2DM patients with AKI and for further 
individualized treatment.

As age increases, the risk of death will increase, owing 
to the weakened capacity of kidney reserve in all DM 
patients [24]. Another study [25] found that age was 

Fig. 4  Calibration chart showed the consistency of the predicted probability and actual values of the training and validation cohorts

Fig. 5  DCA curves of the training and validation cohorts. The horizontal line indicates that all samples were negative and were not treated, with a 
net benefit of 0. The oblique line indicates that all samples were positive. The brown line shows the net benefit of SOFA score, the orange line shows 
the net benefit of the SAPS II score, and the blue line shows the net benefit of the nomogram
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positively correlated with all-cause mortality in all T2DM 
patients. Similarly, in our study, we also found that age 
was significantly associated with an increased risk of 
90-day mortality in T2DM patients with AKI. Heart 
failure led to worsening of clinical outcomes and was 
significantly associated with an increased risk of death 
in T2DM patients [26]. We also concluded that T2DM 
patients with CHF have a higher risk of 90-day mortal-
ity, which is similar to the opinion that the interaction 
between DM, heart failure and kidney dysfunction, which 
forms a vicious cycle and can increase the occurrence 
of poor prognosis [27]. A study [28] found that a higher 
WBC count was a predictor of death in DM patients with 
heart failure. A higher WBC count was associated with 
an increased risk of death in T2DM patients [29]. Our 
model showed that WBC count was a significant inde-
pendent risk prognostic factor for T2DM patients with 
AKI. It is well known that elevated WBC counts indicate 
an inflammatory state, which can cause cell damage and 
further induce organ dysfunction, resulting in patient 
death [30]. Elevated Bun can further increase the risk 
of poor prognosis in T2DM patients [31]. A study [32] 
found that a high Bun level was a risk factor for death in 
patients with AKI. Similarly, we concluded that elevated 
Bun was significantly associated with an increased risk 
of mortality in T2DM patients with AKI. CAD that indi-
cates the coronary artery stenosis is greater than 50% is 
an independent risk factor for death in T2DM patients 
[33]. We concluded that CAD was favorable for the prog-
nosis of T2DM patients with AKI, which differs from past 
opinions. This may be because patients had taken preven-
tive and therapeutic measures to improve the prognosis 
of CAD prior to hospital. Coagulation disorders, includ-
ing thrombocytopenia, elevated INR and prolonged 
APTT, may predict adverse clinical outcomes in patients 
with septic AKI [34]. In our model, prolonged PTT also 
increased the risk of death in T2DM patients with AKI. 
A study [35] found that malignancy patients with diabe-
tes had higher all-cause mortality than those without dia-
betes. Cancer was an independent risk factor for T2DM 
with AKI [36]. Our study also found that malignancy 
was associated with an increased risk of 90-day mortal-
ity. A study [37] found that obesity was not only a risk 
factor for AKI but also a risk factor for death in AKI 
patients. However, a large multicenter cohort of critically 
ill patients reported that overweight patients had a lower 
risk of 60-day mortality [38]. In addition, a meta-analysis 
reported that overweight and obese patients could more 
easily improve their prognosis compared with normal 
BMI patients [39]. Similarly, in our model, we also found 
that higher BMI can reduce the risk of death. Critically 
ill patients are often in a state of consumption. Patients 
with moderately high BMI may have a relatively good 

compensatory capacity, thereby reducing the risk of 
death. Moreover, adipokines secreted by adipocytes may 
weaken the inflammatory response, thereby potentially 
improving the survival rate of critically ill patients [40]. 
Based on the KDIGO criteria, AKI stage represents the 
degree of kidney function damage. A study [41] showed 
that the risk of death in hospitalized patients was posi-
tively correlated with the stage of AKI, with the highest 
mortality in patients with stage 3 AKI. This was consist-
ent with our findings that the stage of AKI was associated 
with an increased risk of 90-day mortality. SpO2 reflects 
the body’s oxygen supply and degree of hypoxia, which is 
a factor related to critical illness [42]. We also concluded 
that T2DM patients with low PaO2 have a higher risk of 
90-day mortality.

We often use a series of scoring systems to predict the 
prognosis of patients, such as SOFA scores and SAPS II 
scores. SOFA and SAPS II scores are the most commonly 
used clinical scoring systems and can effectively evalu-
ate the prognosis of severe patients in the ICU [43, 44]. 
However, the predictive value of these scoring systems 
is different in different diseases. The main advantage of 
our study was the establishment of a nomogram based 
on objective indicators to predict the prognosis of T2DM 
patients with AKI. The AUC value of our model was 
higher than that of the SOFA and SAPS II scores, and the 
Hosmer‒Lemeshow test and correction curve confirmed 
that the model had good discrimination power in both 
the training cohort and validation cohort.

There are several limitations of the study. First, our 
study was a single-center retrospective study, and there 
was selection bias. Second, there were uncontrollable con-
founding factors affecting the results, such as the use of 
drugs and unspecified comorbidities. Third, the database 
was relatively old, and our model needs to be validated by 
using external data from a recent multicenter study.

Conclusion
In this study, we developed and validated a nomogram 
model for predicting 90-day mortality in T2DM patients 
with AKI. The model included 10 indicators that were 
easily obtained in clinical practice, showing good clini-
cal applicability. We hope that our model can help clini-
cians better distinguish patients with high risk of death, 
and timely formulate treatment plans and interventions 
to reduce the death of patients.
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