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Abstract 

Purpose: Early discontinuation of postoperative oxygen support (POS) would partially depend on the innate pul-
monary physics. We aimed to examine if the initial driving pressure (dP) at the induction of general anesthesia (GA) 
predicted POS prolongation.

Methods: We conducted a single-center retrospective study using the facility’s database. Consecutive subjects over 
2 years were studied to determine the change in odds ratio (OR) for POS prolongation of different dP classes at GA 
induction. The dP  (cmH2O) was calculated as the ratio of tidal volume (mL) over dynamic Crs (mL/cmH2O) regardless 
of the respiratory mode. The adjusted OR was calculated using the logistic regression model of multivariate analysis. 
Moreover, we performed a secondary subgroup analysis of age and the duration of GA.

Results: We included 5,607 miscellaneous subjects. Old age, high scores of American Society of Anesthesiologist 
physical status, initial dP, and long GA duration were associated with prolonged POS. The dP at the induction of GA 
(7.78 [6.48, 9.45] in median [interquartile range]) was categorized into five classes. With the dP group of 6.5–8.3  cmH2O 
as the reference, high dPs of 10.3–13  cmH2O and ≥ 13  cmH2O were associated with significant prolongation of POS 
(adjusted OR, 1.62 [1.19, 2.20], p = 0.002 and 1.92 [1.20, 3.05], p = 0.006, respectively). The subgroup analysis revealed 
that the OR for prolonged POS of high dPs disappeared in the aged and ≥ 6 h anesthesia time subgroup.

Conclusions: High initial dPs ≥ 10  cmH2O at GA induction predicted longer POS than those of approximately 7 
 cmH2O. High initial dPs were, however, a secondary factor for prolongation of postoperative hypoxemia in old age 
and prolonged surgery.
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Introduction
High driving pressure (dP) is a strong predictor of mor-
tality in acute respiratory distress syndrome (ARDS) 
[1]. The excessive dP generally increases the risk of 

ventilator-induced lung injury in ARDS [2]. For sur-
gical subjects, inadequate respiratory strategies may 
increase the risk of postoperative pneumonia or atelec-
tasis [3, 4]. A meta-analysis of studies in surgical sub-
jects demonstrated that the lung-protective ventilatory 
strategy, including low tidal volume and/or PEEP dur-
ing anesthesia, reduced the risk of postoperative pulmo-
nary complication (PPC) [5, 6]. Recently, the incidence 
of PPCs reportedly increased with increasing dP during 
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anesthesia with an individual PEEP management strategy 
[7–9]. The dP is one of the most important and clinically 
relevant measures of subject respiratory status. How-
ever, the dP immediately following the induction of gen-
eral anesthesia (GA) have not been considered while the 
high dP forces more tight control of respiration during 
surgery.

Moreover, to measure the effect of intraoperative res-
piratory management, previous researchers have com-
pared the rate of PPCs. The PPCs included various 
conditions, such as atelectasis, pneumonia, acute res-
piratory distress syndrome, pulmonary embolism, and 
other respiratory failures [5, 6, 10, 11]. As an alternative 
to PPC, we conceived that composite postoperative oxy-
gen support (POS) duration may represent another clini-
cally relevant outcome. Ventilator-associated events were 
defined as increases in inspiratory oxygen concentration 
for two consecutive days. These are used for surveillance 
as an alternative to ventilator-associated pneumonia [12, 
13]. Considering this, we proposed that the duration of 
composite postoperative oxygen support (POS) is a pos-
sible surrogate marker of postoperative respiratory dete-
rioration or hypoxemia [14]. The POS can be surveyed on 
a large scale under uniform criteria.

To solve the aforementioned unaddressed issues, we 
aimed to determine whether driving pressure immedi-
ately following the induction of GA predicted the need 
for POS. Moreover, we attempted to identify subgroups 
of subjects who required prolonged POS whose risk was 
predicted by the dP after induction of GA.

Methods
We conducted a retrospective observational clinical study 
using the local electronic medical records, together with 
the anesthesia chart database. Ethical approval for this 
study was provided by the Research Ethics Committee 
of the Fukui University (#20210023). The requirement 
for written informed consent directly to the participants 
was waived by the Research Ethics Committee of the 
Fukui University because of the retrospective nature of 
the study. However, as opt-out policy, the information of 
study was cited on the hospital web site and the partici-
pants were allowed to deny the inclusion to the study via a 
direct contact to the researchers.

Subjects and database
We included consecutive surgical subjects who received 
GA under mechanical ventilation from the anesthe-
sia chart system, naming GAIA (Nihon Koden, Tokyo, 
Japan). The surgery date was from January 1, 2019, to 
December 31, 2020. The data of duplicated subjects who 
underwent sequential surgeries during a single hospital 

admission were deleted (Supplemental Fig. 1). We did not 
calculate the sample size required.

The datasets included the age; height; weight; Ameri-
can Society of Anesthesiologist (ASA) physical status 
classification; surgical categories; and the time of begin-
ning and stop times of anesthesia, the beginning and 
stop times of surgery, the beginning and stop times of 
laparotomy, and the beginning and stop times of one-
lung ventilation. Using the unique identity number for a 
single surgery, we collected the respiratory parameters 
measured on Aisys CS 2 (GE Healthcare, Chicago, IL), 
including the respiratory system compliance (Crs), tidal 
volume, peak pressure, positive end-expiratory pres-
sure, during every minute of anesthesia. Moreover, we 
electronically collected the following data from the hos-
pital medical records operated by IBM (Tokyo, Japan): 
admission date, discharge date, intensive care unit (ICU) 
admission date, ICU discharge date, the beginning date 
of mechanical ventilation, including non-invasive posi-
tive ventilation, the final date of mechanical ventilation, 
the beginning date of oxygen therapy, the final date of 
oxygen therapy, and survival state at hospital discharge. 
The aforementioned data were fed into the database.

Outcomes
The odds ratio (OR) for prolonged POS in different dPs at 
GA induction was the primary outcome. Secondary out-
comes included the length of POS, duration of postop-
erative mechanical ventilation, duration of postoperative 
ICU stay, and hospital mortality rate at different dPs.

Respiratory parameters
The Crs was displayed on Aisys CS 2 under manufacture-
driven calculation [in case of pressure control ventila-
tion, the value of dynamic Crs used; Crs = tidal volume/
(maximum pressure‒positive end expiratory pressure)]. 
Moreover, it measured the expiratory tidal volume. These 
values were stored on the anesthesia chart system and 
extracted every minute during anesthesia. Subsequently, 
the dP  (cmH2O) was calculated as the ratio of tidal vol-
ume (mL) over Crs (mL/cmH2O). The dP following intu-
bation denoted the mean of consecutive 9-min stored 
values post-intubation.

Respiratory management
Respiratory management strategy was determined by 
attending anesthesiologists under the measurements 
of capnography and respiratory parameters displayed 
on Aisys CS 2. The tidal volume was limited below 
8 ‒ 10  mL/ideal body weight. The use of zero end-
expiratory pressure (ZEEP) was limited to brief peri-
ods during hepatectomy or other situations deemed 
necessary by anesthesiologists, and initial PEEP at 
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the induction of GA was 5  cmH2O and decided to be 
increased in case of Crs decrease under the observa-
tion of Crs trends visualized on the electric anesthesia 
chart. The pressure-controlled ventilation with vol-
ume guarantee (PCV-VG) was ruled to be used mainly. 
Crs was displayed on Aisys CS 2 under manufacture-
driven calculation, and for the measurement of Crs the 
plateau pressure was not required. Recruit maneuver 
was allowed anytime. We did not have protocolized 
ventilator management tools to minimize dP during 
anesthesia.

Postoperative oxygen support
The composite POS included the use of mechanical ven-
tilation, a nasal cannula, or face mask. The duration of 
POS was defined as one between the day of surgery to 
the final day on which the oxygen therapy was discontin-
ued for 2 consecutive days. The administration of oxygen 
was determined by the ward staff or surgical physicians, 
mainly based on pulse oximetry values without concrete 
written criteria. We neither determined the protocols for 
its discontinuation nor implemented anesthesiologist-
driven assessment tools for POS. Most surgical subjects 
received oxygen therapy for several hours following sur-
gery or overnight until the next day of surgery for post-
anesthetic concerns; therefore, ≥ 3 days of POS (i.e. later 
than post-operative day 2) was defined as prolonged POS.

Statistical analysis
We divided the dP at the induction of GA into five cat-
egories using Jenks natural breaks classification method. 
We compared the duration of POS among these five cat-
egories using the Wilcoxon test or Kruskal–Wallis test. 
Kaplan Meier curves were separately plotted among the 
five categories. We performed a log rank test for analyz-
ing the differences among the Kaplan Meier curves. Fur-
thermore, we compared the adjusted OR of prolonged 
POS in different dPs with the reference category covering 
the median of dPs by implementing the logistic regres-
sion model to binary values. For numerical data, we used 
the Cox regression hazard model to calculate the haz-
ard ratio (HR). We performed a multivariate analysis to 
adjust for the clinically relevant parameters, such as age, 
ASA physical status, categories of surgery, and the dura-
tion of anesthesia. We performed a subgroup analysis for 
the surgical category, age, ASA physical status, surgical 
schedule, duration of anesthesia, and other subject status. 
The combined database was managed, including clean-
ings on Microsoft Excel (Microsoft, Redmond, WA). All 
graphics and statistics were performed using Microsoft 
Excel or JMP 16 (SAS, Cary NC).

Results
Of the 5,607 included subjects, 91.1% underwent an 
elective surgery (Table 1). PCV-VG was the respiratory 
mode in most cases (94.3%; Table 1) and the respiratory 
parameters at the induction of GA was shown in Sup-
plemental Table 1.

Prolonged postoperative oxygen support and driving 
pressure
The POS was conducted for 1  day or 2  days in most 
cases (4,777 subjects; 85.2%) and was classified as 
normal (< 3  days) or prolonged (≥ 3  days). In the pro-
longed POS group, the duration of surgery was longer 
than in others (311 [170, 520] min vs. 140 [82, 236] 
min, p < 0.001; Supplemental Table  2). Furthermore, 
the prolonged POS group demonstrated longer hospital 

Table 1 Patient characteristics

Values are presented as percentages or medians [interquartile ranges]

ASA American Society of Anesthesiologists

All cases (n = 5,607)

Age (years) 65 [48, 74]

Male: Female 2,774 (50.5%): 2,833 (49.5%)

Body mass index (kg∙m−2) 22.8 [20.5, 25.6]

ASA physical status

 1, 1E 636 (11.3%), 76 (1.4%)

 2, 2E 3,255 (58.1%), 230 (4.1%)

 3, 3E 1,213 (21.6%), 191 (3.4%)

  ≥ 4, 4E 0 (0%), 3 (0.1%)

Emergent hospital admission 829 (14.8%)

Elective surgery 5,104 (91.1%)

Surgical category

 Cerebral 167 (3.0%)

 Head or neck 1,343 (24.0%)

 Chest 406 (7.2%)

 Cardiovascular 176 (3.1%)

 Upper abdomen 579 (10.3%)

 Lower abdomen 1,233 (22.0%)

 Extremity 849 (15.1%)

 Spine 367 (6.6%)

 Surface or wall 411 (7.3%)

 Other 72 (1.3%)

Duration (min)

 Anesthesia 264 [186, 396]

 Mechanical ventilation in the operation 
room

232 [156, 345]

 Surgery 201 [81, 214]

Laparoscopic procedure 1,007 (18.0%)

 Duration (min) 120 [71, 210]

One lung ventilation 399 (7.1%)
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stay (24 [17, 37] days vs. 11 [7, 19] days, p < 0.001) and 
higher mortality (1.9% vs. 0.1%, p < 0.001) than others.

In the prolonged POS group, the dP at GA induction 
was higher than in the others (8.33 [6.80, 10.04]  cmH2O 
vs. 7.71 [6.45, 9.34]  cmH2O; Supplemental Table 2). The 
dP values correlated with the duration of POS as follows: 
POS (day) = 1.17 + 0.13 × dP  (cmH2O) (F value, 55.17; 
p < 0.0001).

Different driving pressure categories and outcomes
The subjects were categorized into five classes according 
to dPs as follows: < 6.5  cmH2O, 6.5–8.3  cmH2O, 8.3–10.3 
 cmH2O, 10.3–13.0  cmH2O, and ≥ 13.0  cmH2O (Table  2, 
Supplemental Table  3). The median duration of POS in 
all classes was 2 [1, 2] days (differences among classes; 
χ2, 10.05; p = 0.040, Kruskal–Wallis test; Table  2). The 
Kaplan Meier curve of POS varied among the groups 
(p < 0.0001, log rank test; Fig. 1). Considering the median 
dP was 7.7  cmH2O in the cohort, we set the reference 
as 6.5–8.3  cmH2O. Compared with the reference, the 
adjusted OR of prolonged POS gradually increased in 
the high dP groups of 8.3–10.3  cmH2O, 10.3–13  cmH2O, 
and ≥ 13  cmH2O (1.38 [1.8, 1.77], p = 0.011; 1.62 [1.19, 
2.20], p = 0.002; and 1.92 [1.20, 3.05], p = 0.006, respec-
tively; Fig. 2).

In subjects who required mechanical ventilation, dP 
did not affect the postoperative duration of mechanical 
ventilation (Table  2). In subjects who admitted to ICU, 
higher dP were associated with the longer postoperative 
ICU stay. Hospital stay and hospital mortality differed 
among different dP categories.

Subgroup analysis
We examined the change in OR for prolonged POS 
among different dP categories in the subgroup analysis. 
In the non-elderly (< 80  years) subgroup, high dPs were 
associated with high OR for prolonged POS; however, 
this association was not seen in the aged (≥ 80  years) 
subgroup (Supplemental Fig.  1). Considering the ASA 
physical status, high dPs were associated with high OR 
for prolonged POS in the low ASA physical status (1, 2) 
subgroup, but not in the high ASA physical status (≥ 3) 
subgroup (Supplemental Fig. 1). Analyzing two classes of 
the duration of anesthesia (< 6 h and ≥ 6 h) demonstrated 

Table 2 Outcomes

Values are presented as percentages or medians [interquartile ranges]

ICU intensive care unit

All cases 
(n = 5,607)

Driving pressure  (cmH2O)

 < 6.5  
(n = 1,408)

6.5 ‒ 8.3 
(n = 1,867)

8.3 ‒ 10.3 
(n = 1,383)

10.3 ‒ 13.0 
(n = 701)

 ≥ 13.0  
(n = 209)

p-value

Postoperative 
oxygen support 
(day)

2 [1,2] 2 [1,2] 2 [1,2] 2 [1,2] 2 [1,2] 2 [1,2] 0.040

Postoperative 
duration of 
mechanical ven-
tilation in applied 
cases (day)

4 [2,7] 4 [2,7] 3 [2,5] 4 [2,8] 6 [2,12] 4 [2,9] 0.056

Postoperative ICU 
stay in applied 
cases (day)

3 [2,7] 2 [2,5] 3 [2,5] 3 [2,7] 5 [2,9] 3 [2,8]  < 0.001

Hospital stay (day) 13 [8, 22] 12 [8, 21] 12 [8, 21] 14 [8, 22] 15 [8, 22] 15 [8, 25] 0.002

Hospital mortality 21 (0.37%) 0 (0%) 4 (0.21%) 9 (0.65%) 5 (0.71%) 3 (1.44%) 0.001

Fig. 1 The probability of duration of postoperative oxygen support 
in different driving pressure categories. The duration of composite 
postoperative oxygen support has been compared among subjects 
divided into five classes according to the driving pressure (dP). Kaplan 
Meier curves demonstrate significant differences among the groups 
(p < 0.0001, log rank test)
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that high dPs were associated with high OR for prolonged 
POS in the < 6 h subgroup. Contrarily, the OR was simi-
lar in different dPs in the ≥ 6 h subgroup (Supplemental 
Fig.  1). Among different surgical categories, these asso-
ciations disappeared, except for lower abdominal surgery 
(Supplemental Table 4).

Discussion
Prolonged POS defined as ≥ 3  days following surgery 
was associated with advanced age, increased ASA physi-
cal status, and long duration of anesthesia. Initially high 
dP ≥ 10  cmH2O at GA induction was associated with an 
increased OR for prolonged POS. Since the association 
between high dPs and prolonged POS disappeared in 
the subgroups of advanced age, increased ASA physical 
status, or long duration of anesthesia, higher postintuba-
tion dPs was associated with prolonged POS in subjects 
without systemic comorbidities. Conversely, the initial 
dPs did not predict POS in subjects with advanced age, 
higher ASA physical status scores, or prolonged duration 
of surgery.

To measure postoperative respiratory deterioration or 
hypoxemia, we set the duration of POS as the primary 
outcome because it is easy to define and measure. In pre-
vious studies, PPC, including atelectasis or pulmonary 
infection, was the primary outcome [5, 6, 10, 11]. Since 
POS mainly indicated the extent of hypoxemia post-sur-
gery, it would be a surrogate marker of PPCs. However, 
there are several indications for POS, including oxygen 
administration for purpose of preventing surgical site 
infection [15, 16]. To eliminate the influence of early 
phase of POS relating post-anesthesia routinely, we used 

the prolongation of POS as ≥ 3  days, since it suggests a 
post-operative respiratory complication. Then, the meas-
urable values of the duration of POS were significantly 
associated with perioperative subject factors, including 
initial dP for ventilation.

Moderately high dP (≥ 10  cmH2O) at GA induction 
was significantly associated with an increased risk of 
POS, similar to the correlation between high plateau 
pressure and high risk of PPCs [17]. Ladha et al. catego-
rized the subjects with the extent of plateau pressure into 
four classes based on their quartiles [17]. They set low-
est quartile as the reference and demonstrated the OR. 
Contrarily, we used the Jenks natural breaks classifica-
tion method that might maximize the difference among 
the groups. We believe this categorization is better, albeit 
needing a critical argument about how the dP break 
point values are categorized. Subsequently, the reference 
would be pointed on the median or the center of values. 
Recently, Zhang, et  al., showed that PEEP optimization 
guided by minimum dP resulted in fewer PPCs than the 
fixed PEEP group [18]. Furthermore, low dP management 
during one-lung ventilation was related to the lower inci-
dence of PPCs [19]. A large-scale post-hoc analysis of the 
LAS VEGAS study [11] showed that the time-weighted 
average dP was also associated with low rates of PPCs [9]. 
The researchers clearly showed that dPs were changed 
with the effects of the duration and types of surgery. We 
do not object to the importance of minimized dP strat-
egy during the surgery. However, in the present study, we 
focused on initially high dP at GA induction considering 
that it suggests the low Crs in nature, indicating ventila-
tion is difficult. Supposedly those subjects must be lim-
ited to low dP management during anesthesia. We did 
not show how the initial physiological status of surgical 
subjects influenced on the respiratory management dura-
tion the anesthesia. On this point, the present evidence 
has impact on further study seeking the best strategy for 
intraoperative ventilation.

The study protocol and concept had several limita-
tions. First, owing to the retrospective observational 
design and the use of values stored on the database, 
we did not control for the respiratory settings using 
strict protocols. The target end-tidal  CO2,  pCO2, or the 
range of pressure and tidal volume were determined 
by bedside anesthetists supervised by anesthesiology 
specialists. Second, we assessed the calculated driv-
ing pressure derived from dynamic Crs. The plateau 
pressure under the volume control ventilation was not 
measured. Thus, the absolute value of the driving pres-
sure may be misleading. Third, the single-minute values 
of Crs or tidal volume contained outliers. Fourth, the 
study population was diverse, and the main result was 
difficulty in utilization for a specific surgical patient. 

Fig. 2 Prolonged postoperative oxygen support in different driving 
pressure categories. Subjects have been divided into five categories 
according to the driving pressure (dP). Considering a reference dP 
of 6.5–8.3  cmH2O, the three high dP groups show significantly high 
adjusted odds ratio for prolonged oxygen support
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Fifth, we did not consider the results of the periopera-
tive pulmonary function test, which is a possible gold 
standard for determining the respiratory function sta-
tus. Sixth, importantly, POS lacked standard criteria for 
discontinuation. No articles have previously provided 
evidence for a correlation between the duration of oxy-
gen therapy and the extent of postoperative pulmonary 
complications, despite the correlation being clinically 
natural. Moreover, we did not distinguish oxygen ther-
apy without pulmonary disease (for example, for car-
diac failure).

In summary, high dPs ≥ 10  cmH2O at GA induction 
predicted longer POS than dPs of 7  cmH2O. The high dP 
at GA induction would be helpful for predicting postop-
erative respiratory conditions in a limited group of young 
subjects who received short surgeries. Further study 
would clarify the difference of respiratory management 
between initially high dPs group and others and validate 
the clinical benefit of the presented prediction.
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