
Yin et al. BMC Anesthesiology           (2022) 22:16  
https://doi.org/10.1186/s12871-021-01552-x

RESEARCH

A combined risk model for the multi-
encompassing identification of heterogeneities 
of prognoses, biological pathway variations 
and immune states for sepsis patients
Zong‑xiu Yin1,2, Chun‑yan Xing1,2, Guan‑hua Li1,2, Long‑bin Pang1,2, Jing Wang1,2, Jing Pan1,2, Rui Zang1,2 and 
Shi Zhang1,2* 

Abstract 

Background: Sepsis is a highly heterogeneous syndrome with stratified severity levels and immune states. Even in 
patients with similar clinical appearances, the underlying signal transduction pathways are significantly different. To 
identify the heterogeneities of sepsis from multiple angles, we aimed to establish a combined risk model including 
the molecular risk score for rapid mortality prediction, pathway risk score for the identification of biological pathway 
variations, and immunity risk score for guidance with immune‑modulation therapy.

Methods: We systematically searched and screened the mRNA expression profiles of patients with sepsis in the Gene 
Expression Omnibus public database. The screened datasets were divided into a training cohort and a validation 
cohort. In the training cohort, authentic prognostic predictor characteristics (differentially expressed mRNAs, path‑
way activity variations and immune cells) were screened for model construction through bioinformatics analysis and 
univariate Cox regression, and a P value less than 0.05 of univariate Cox regression on 28‑day mortality was set as the 
cut‑off value. The combined risk model was finally established by the decision tree algorithm. In the validation cohort, 
the model performance was assessed and validated by C statistics and the area under the receiver operating charac‑
teristic curve (AUC). Additionally, the current models were further compared in clinical value with traditional indica‑
tors, including procalcitonin (PCT) and interleukin‑8 (IL‑8).

Results: Datasets from two sepsis cohort studies with a total of 585 consecutive sepsis patients admitted to two 
intensive care units were downloaded as the training cohort (n = 479) and external validation cohort (n = 106). In the 
training cohort, 15 molecules, 20 pathways and 4 immune cells were eventually enrolled in model construction. These 
prognostic factors mainly reflected hypoxia, cellular injury, metabolic disorders and immune dysregulation in sepsis 
patients. In the validation cohort, the AUCs of the molecular model, pathway model, immune model, and combined 
model were 0.81, 0.82, 0.62 and 0.873, respectively. The AUCs of the traditional biomarkers (PCT and IL‑8) were 0.565 
and 0.585, respectively. The survival analysis indicated that patients in the high‑risk group identified by models in the 
current study had a poor prognosis (P < 0.05). The above results indicated that the models in this study are all superior 
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Introduction
Sepsis is a heterogeneous syndrome with an uncontrolled 
systemic inflammatory host response to infection which 
furthermore induces perpetuation of organ dysfunction 
[1]. Prolonged immune dysfunction induced imbalance 
between hyper-inflammation and anti-inflammation 
is identified as main reason of organ dysfunction and 
lethality in sepsis. Therapeutic ways for sepsis have been 
limited for decades and the mortality of sepsis is 10–35% 
[2, 3].

It is generally believed that previous failure of proposed 
treatments for septic patients is due to substantial het-
erogeneity in sepsis and the lack of methods to precisely 
classify patients at molecular biology level [4–6]. The het-
erogeneity in sepsis complicated the screening specific 
population who might benefit from adjuvant treatments. 
The heterogeneity of immune alterations in sepsis actu-
ally limited the efficacy and progress of immune modula-
tion [7, 8]. A rapid tool to quantitatively measure immune 
disorders could potentially classify septic population for 
accurate immune modulation. Therefore, Burnham et al. 
[9] stratified patients with sepsis to the four endotypes, 
and Sweeney et al. [4] built a molecular model to predict 
mortality for patients with sepsis according to transcrip-
tomic data.

Nevertheless, these landmark studies for explore het-
erogeneity in sepsis still could not identify heterogeneity 
at pathogenesis level, therefore fail to achieve more-pre-
cise personalized interventions especially pathogenesis-
related therapy. This is due to that even in patients with 
similar clinical surfaces, underlying pathogenesis may 
be significant different [10, 11]. Obviously, it is robustly 
believed that better insight into heterogeneity of patho-
genesis is crucial to improve precise therapeutic opinions 
[12–14].

Under this background, we conducted a secondary 
analysis on high-throughput data of sepsis downloaded 
from a public database to construct a combined risk 
model including the molecular risk score, pathway risk 
score and immunity risk score for better insight into the 
heterogeneity of sepsis. The molecular risk score, as a 
rapid assay, could promote accuracy in sepsis prognosis 
for the appropriate matching of patients with resources. 

The pathway risk score could indicate heterogeneity of 
pathogenesis for the further selection of specific adjuvant 
therapy. The immune risk score could provide a quantita-
tive measure of immune dysfunction for the guidance of 
immune modulation therapy.

Methods
This study included the training cohort to construct the 
combined risk model and the validation cohort to com-
pare the models’ performance with classical septic indi-
cators such as procalcitonin (PCT) and interleukin-8 
(IL-8). The analysis flow plot is shown in Supplemental 
Material (SM) Fig. 1.

Database search and study selection
The data discussed in this publication were down-loaded 
from National Center for Biotechnology Information’s 
(NCBI’s) Gene Expression Omnibus(GEO) [15, 16]. GEO 
is an international public repository that archives and 
freely distributes microarray, next-generation sequenc-
ing, and other forms of high-throughput functional 
genomics data submitted by the research community [15, 
16].

The GEO database was searched for all expression 
microarrays that matched terms associated with sepsis. 
The datasets were collected from clinical studies investi-
gating sepsis in adults using peripheral blood within 48 h 
after ICU admission. The exclusion criteria were as fol-
lows: (1) studies with septic animal or cell models and (2) 
studies with a lack of prognostic information. The data-
set with the maximum sample size was set as the training 
cohort, and another dataset was set as the external vali-
dation cohort.

All datasets were downloaded as txt files, and outputs 
from the mRNA array were normal-exponential back-
ground corrected and then between-array quantile nor-
malized using the limma R package.

Statistical analysis
The statistical analysis included 3 steps: (1) the identifi-
cation of prognostic molecules, pathways and immune 
cells; (2) the construction of prediction models; and (3) 
model evaluation.

to the traditional biomarkers for the predicting the prognosis of sepsis patients. Furthermore, the current study pro‑
vides some therapeutic recommendations for patients with high risk scores identified by the three submodels.

Conclusions: In summary, the present study provides opportunities for bedside tests that could quantitatively and 
rapidly measure heterogeneous prognosis, underlying biological pathway variations and immune dysfunction in sep‑
sis patients. Further therapeutic recommendations for patients with high risk scores could improve the therapeutic 
system for sepsis.

Keywords: Sepsis, Heterogeneity, Prediction model, Signal transduction pathway, Immune dysfunction
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(1) Identification of prognostic molecules, pathways and 
immune cells:

For assessment underlying pathway activity variation 
in the sepsis samples, we utilized GSVA algorithm and 
canonical pathways signature, which could transform 
the gene by sample matrix into canonical pathways 
enrichment scores by sample matrix through GSVA R 
package [17, 18].

To define percentages of immune cells in the sepsis 
whole blood, CIBERSORT algorithm were conducted. 
In brief, CIBERSORT algorithm could identify and 
qualify the absolute fractions of 22 human immune cell 
phenotypes from transcriptomic data consist of diverse 
T cell types, B cells, NK cells, and myeloid subsets. 
The expressions of mRNA, pathways and immune cells 
were finally enrolled in prognostic features screening 
[19–21].

To determine prognostic signatures, the univariate 
Cox proportional hazards model with Bonferroni cor-
rection for multiple comparisons was performed on 
training cohort, with a cut-off value of P < 0.05, using 
the survival R package [22–24]. Furthermore, for reduc-
ing overfitting problems, the least absolute shrinkage 
and selection operator (LASSO) and both backward 
and forward stepwise selection with the Akaike infor-
mation criterion (AIC) were utilized to screen the final 
characteristics through the glmnet R and survival R 
packages [25, 26].

(2) Construction of the prediction models:

Construction of the sub-models: In the training data-
set, the associations of relevant characteristics with sur-
vival were evaluated based on Cox proportional hazards 
regression models. Hazard ratios (HRs) were shown with 
their 95% CIs. The selected characteristics were incorpo-
rated in the nomograms (risk model) to predict the prob-
ability of 28-day mortality using the rms R package [27, 
28]. Every patient’s risk score was calculated based on the 
predictive model, and the respective medians of the two 
groups were set as the cut-off value to divide the patients 
into high-risk and low-risk groups.

Construction of the combined-model: The risk scores, 
age, male sex and pneumonia status were assessed by 
multivariable Cox proportional hazards regression, and 
the variables that were significantly associated with sur-
vival were included in the combined risk model.

To simplify the model for rapid clinical application, the 
decision tree algorithm was utilized to further optimize 
the combined risk model [29].

(3) Model evaluation:

In the validation dataset, model performance was 
assessed according to the discrimination ability and 
calibration ability. Discriminating ability was evaluated 
using C statistics and the area under the receiver oper-
ating characteristic curve (AUC). Calibration of the 
nomograms was assessed using chi-square tests, compar-
ing the 28-day mortality of low-risk and high-risk septic 
populations. In addition, the current models were further 
compared in clinical value with traditional indicators, 
including PCT and IL-8.

R × 64 4.0.3 was utilized to conduct all analyses.

Results
Patients
After the search strategy, two mRNA datasets (GSE65682 
and GSE63042) of patients with sepsis from the GEO 
public database (585 septic patients) were finally enrolled 
in the current study [9, 27]. Sepsis was defined accord-
ing to the Sepsis 1.0 criteria in these two datasets [30, 31]. 
The patients with sepsis were all enrolled from the ICU.

The septic shock ratio in the training and validation 
cohorts was 34.8 and 31.1%, respectively. Details of the 
demographic details are shown in Table 1. The GSE65682 
dataset was set as the training cohort, and the GSE63042 
dataset was set as the external validation cohort.

The dataset of the training cohort was uploaded by Sci-
cluna et al. from the University Medical Center in Utre-
cht and the Academic Medical Center in Amsterdam. 
This dataset included 479 patients with sepsis and rela-
tively complete prognostic data. In addition, 42 healthy 
participants (median age 35 years [IQR 30–63]; 24 [57%] 
of the 42 participants were men) were also enrolled in the 
GSE65682 dataset.

GSE63042 data were uploaded by Langley et  al. from 
the Immunology Department at the University of New 

Table 1 Demographic and clinical characteristics

Definition of abbreviations: N number, APACHE Acute Physiology and Chronic 
Health Evaluation, aAPACHE IV; bAPACHE II

GSE65682
Patients with sepsis: 
479

GSE63042
Patients with sepsis: 
106

Male sex 272(56.8%) 63(59.4%)

Age 63(18–89) 59(38–85)

Country Netherlands USA

Pneumonia diagnoses 183(38.0%) 24(22.6%)

Septic shock 167(34.8%) 33(31.1%)

28 day mortality 115(24.0%) 28(26.4%)

APACHE 85 (69–103)a 16(9–28)b

Main study Classification for sepsis 
through transcriptomic 
data

Bioinformatic analysis 
for host response in 
sepsis
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Mexico, which included 106 septic patients with 28-day 
mortality information.

Molecular risk model
A total of 1178 differentially expressed mRNAs among 
479 patients with sepsis and 42 healthy participants were 
identified and screened, as shown in the volcano plot 
(SM Fig.  2). Furthermore, 359 molecules were further 
identified as prognostic molecules in sepsis and were 
significantly associated with 28-day cumulative mortal-
ity (P < 0.05), as shown in SM Table  1. To construct the 
optimal model, 15 prognostic molecules were screened 
into the final molecular model construction. The details 
of the 15 molecules are shown in Fig. 1, and the screen-
ing process is shown in SM Table 2 and SM Fig. 3. The 
main functions of these prognostic molecules included 
immune response, cell apoptosis and protein synthesis in 
sepsis.

Based on these 15 prognostic molecules, a molecular 
model and nomograms were constructed, as shown in 
SM Fig. 4. SM Figs. 5 and 6 markedly show that patients 
in the high-risk group had a poor prognosis, which dem-
onstrated that this molecular model could rapidly iden-
tify severe patients.

Pathway risk model
A total of 267 pathways that were identified through uni-
variate Cox regression as prognostic pathways were sig-
nificantly associated with 28-day cumulative mortality 
(P < 0.05), as shown in SM Table 3. Twenty pathways were 
further screened as final characteristics for the construc-
tion of the pathway model, as shown in Fig. 2, SM Fig. 7 
and SM Table 4. The nomograms of the pathway model 
are shown in SM Fig. 8.

SM Figs.  9 and 10 clearly show that the number of 
patients who died increased with increasing pathway risk, 
which demonstrated that the pathway model was highly 
associated with the outcome of septic patients. These 
pathways were associated with hypoxia and immune dys-
regulation in sepsis patients. The network relationship of 
the pathways is shown in Fig. 3.

Immunity risk model
Four immune cells (naïve CD4 T cells, naïve naïve B cells, 
M0 macrophages and M2 macrophages) were found to 
be significantly associated with 28-day cumulative mor-
tality, as shown in Fig. 4. The nomograms of the immu-
nity model are shown in SM Fig. 11. SM Figs. 12 and 13 
clearly show that naïve CD4 T cells, naïve naïve B cells, 

Fig. 1 The Molecule‑risk model. To construct the Molecule‑risk model, two steps (molecular characteristics screening and model establishing) 
were conducted. Molecular characteristics screening: 15 prognostic molecules were finally enrolled into the Molecule‑risk model after univariate 
Cox regression analyses, Lasso regression analyses and both backward and forward stepwises selection based on the AIC. Molecule‑risk model 
establishing: The final molecular model was constructed by multivariate Cox regression analyses and generated a molecule risk score for every 
patient. The forest plots of 15 molecules in multivariate Cox regression analyses. The first column was the name of 15 molecules; the second column 
showed the sample size; the third column illuminated the HR and 95%CI of 15 molecules; the forth column was the forest plots of HR and 95%CI; 
the last column indicated the P value of 15 molecules in multivariate Cox regression analyses



Page 5 of 11Yin et al. BMC Anesthesiology           (2022) 22:16  

and M0 and M2 macrophages were obviously upregu-
lated in patients in the high-risk group.

Combined risk model
To evaluate sepsis in multiple dimensions, we merged the 
risk factors from the molecular risk model, pathway risk 
model, immunity risk model and basic patient informa-
tion (age, sex and pneumonia diagnoses) into the com-
bined model. The combined risk model and nomograms 
were eventually built based on age, 8 prognostic mol-
ecules and 9 crucial pathways since these variables were 
independent prognostic factors for sepsis, as shown in 
SM Fig. 14.

The decision tree algorithm was utilized to further 
simplify and optimize the combined risk model for rapid 
clinical application, as shown in Fig.  5. Based on the 

decision tree algorithm, patients could be classified into 
3 subgroups with markedly different outcomes, which 
could rapidly predict the outcome for septic patients.

In addition, the therapeutic recommendations for 
patients with high risk scores calculated by the molecular 
risk model, pathway risk model or immunity risk model 
are summarized in Table 2.

Assessment of model performance
The C statistics of the molecular risk model, pathway risk 
model, immunity risk model and combined risk model 
were 0.79, 0.79, 0.61 and 0.873, respectively. The AUCs 
were 0.81, 0.82, 0.62 and 0.873, respectively (Fig. 6).

In addition, the current models were further compared 
in clinical value with traditional indicators such as pro-
calcitonin (PCT) and interleukin-8 (IL-8). The AUCs of 
PCT and IL-8 were 0.565 and 0.585, respectively, which 

Fig. 2 The Pathway‑risk model. To construct the Pathway‑risk model, two steps (Pathway characteristics screening and model establishing) 
were conducted. Pathway characteristics screening: 20 prognostic pathways were finally enrolled into the Pathway‑risk model after univariate 
Cox regression analyses, Lasso regression analyses and both backward and forward stepwises selection based on the AIC. Pathway‑risk model 
establishing: The final pathway model was constructed by multivariate Cox regression analyses and generated a pathway risk score for every 
patient. The forest plots of 20 pathways in multivariate Cox regression analyses. The first column was the name of 20 pathways; the second column 
showed the sample size; the third column illuminated the HR and 95%CI of 20 pathways; the forth column was the forest plots of HR and 95%CI; the 
last column indicated the P value of 20 pathways in multivariate Cox regression analyses
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Fig. 3 Network diagram to explain the upstream and downstream relationship of the Pathway‑risk model. The red pathways meant hazarded 
pathways (HR > 1) and the blue pathways meant protective pathways (HR < 1). The pathways included in this model can be classified as two types, 
hypoxia and immune dysregulation. The pathway related to hypoxia was HIF‑1 pathway. 1. Hypoxia further induced cellular injury and metabolic 
disorder. The pathways related to metabolic disorder included steroid biosynthesis pathway, Nitrogen metabolism pathway and energy dependent 
of regulation of mTOR by LKB1‑AMPK. The pathways related to cellular injury included TEL pathway and ATF2 pathway. The cell repair was the 
negative feedback of cellular injury, and the pathways related to cellular injury included GAB1 signalosome and TGF‑beta receptor signaling 
activates SMADs. 2. Immune dysregulation can be classified as anti‑immunity, promoting‑immunity and bipolar immune regulation. The pathways 
related to anti‑immunity were TGF‑beta receptor signaling activates SMADs pathway and IL22 soluble receptor pathway; the pathways related 
to promoting‑immunity were NKT pathway, NF‑kappaB pathway and PKA‑mediated phosphorylation of CREB; the pathways related to bipolar 
immune regulation were IL‑4 pathway and negative regulation of RIG‑I/MDA5 pathway

Fig. 4 The Immunity‑risk model. To construct the Immunity‑risk model, two steps (prognostic immune cells screening and model establishing) 
were conducted. Prognostic immune cells screening: 4 prognostic immune cells were finally enrolled into the Immunity‑risk model after univariate 
Cox regression analyses, Lasso regression analyses and both backward and forward stepwises selection based on the AIC. Immunity‑risk model 
establishing: The final immune model was constructed by multivariate Cox regression analyses and generated a immunity risk score for every 
patient. The forest plots of 22 immune cells in univariate Cox regression analyses. The first column was the name of 22 immune cells; the second 
column showed the P value; the third column illuminated the HR and 95%CI of 20 pathways; the forth column was the forest plots of HR and 95%CI
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were markedly lower than those of the combined model 
and submodels (Fig. 6).

The above results indicated that the models in this 
study are all superior to traditional biomarkers for pre-
dicting the prognosis of sepsis patients.

Discussion
Sepsis identifies a highly heterogeneous population of 
patients, including a wide possible extent of patient con-
ditions, complications, severity levels, pathogens, and 
underlying immune states [4, 5]. To evaluate heteroge-
neity of sepsis in multi-dimension, the current study 
constructed a Combined-risk model including three 
sub-models (The molecule-risk model, the Pathway-risk 
model and the Immunity-risk model). The molecule-risk 
score could provide an opportunity to estimate progno-
sis rapidly for precise evaluation the utility of aggressive 
interventions. The Pathway-risk model could adequately 
quantify the patient’s underlying pathway activity altera-
tions for matched therapies selection. The immunity risk 
score from current nomograms could predict immune 
suppressed states based on immune cell subsets. This 

model could be used as the pre-hospital screening tool to 
identify sepsis heterogeneity, and also could be utilized 
as the bedsides monitoring tool to continuously evaluate 
sepsis. The further investigation will develop the related 
kits for rapid detection the screened molecules, pathways 
and immune cells.

For rapidly estimate prognosis of septic patients, the 
previous prediction models and classical biomarkers 
could not precisely identify severe patients in exter-
nal dataset [32–36]. The current Molecule-risk model 
performed well in one external cohort with C-index 
and AUC as 0.790 and 0.810. To furthermore validate 
the novel value of the current model, the current study 
compared our models with the traditional indicators 
including procalcitonin (PCT) and interleukin-8 (IL-8) 
in discriminative ability via receiver operating charac-
teristic curves, shown in Fig. 6. The results indicated that 
the model performances of the Molecule-risk model and 
other models were obviously superior to the traditional 
indicators in clinical value. Since the patients with high 
risk scores calculated by molecular model were very 
sick sepsis, the recommended treatments for could be 

Fig. 5 Decision Tree of Combined‑risk model for rapid clinical application. To evaluate sepsis in multi‑dimension, we merged the risk factors from 
molecule‑risk model, pathway‑risk model, immunity‑risk model and basic information of patients (age, gender and pneumonia diagnoses) into 
the combined model. Based on Decision Tree, patients could be classified as 3 subgroups with markedly different outcomes, which could rapidly 
predict the outcome for septic patient
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transferred to ICU for more intensive monitor and treat-
ments, while patients predicted to own favorable progno-
sis were watched in the general wards safely.

For identifying the heterogeneous pathogenesis in 
sepsis, previous studies [9, 35–37] for risk stratification 
including clinical severity scores such as Acute Physi-
ology and Chronic Health Evaluation (APACHE) or 
Sequential Organ Failure Assessment (SOFA) as well 
as molecular biomarkers could not categorize sepsis at 
pathogenesis level. It is well known that even in patients 
with similar clinical features, underlying pathophysi-
ological mechanisms such as signal transduction path-
way are significant different. The current pathway-risk 
model intrinsically uncovered a part of heterogeneous 
pathogenesis for further selection of specific therapy. 

The Pathway-risk score showed that signal transduction 
pathways of hypoxia, cellular injury and negative feed-
back repair, metabolic disorder and immune dysregula-
tion were significantly associated with adverse outcomes 
of sepsis (Fig.  3). These data demonstrate several path-
ways in sepsis consistent with current knowledge of the 
pathology of this disease [38–45]. In addition, pathway-
risk score uncovered biological pathway activity varia-
tion for accurate identification of high risk patients at 
pathogenesis level. Compared with surface appearances 
such as lactic acid, hypoxia inducible factor-1 pathway 
was classically recognized as intrinsic and robust indictor 
of tissue perfusion insufficiency. Similarly, steroid bio-
synthesis pathway, nitrogen metabolism pathway and 
liver kinase B1- AMP-activated protein kinase pathway 
could identify heterogeneity of metabolic disorder for 
sepsis. Simultaneously, mitochondrial membrane dam-
age-related pathway (activating transcription factor-2 
pathway), apoptosis-related pathway (telomeres, telom-
erase, cellular aging, and immortality pathway) and nega-
tive feedback repair-related pathway (GRB2 associated 
binding protein 1 signalosome and transforming growth 
factor-beta receptor signaling activates SMADs) could 
uncover some heterogeneity of cellular injury for sepsis. 
As patients with high risk scores calculated by pathway 
model could have hypoxia and lower organ perfusion, 
the current study recommended to provide more hemo-
dynamic measurement, improve oxygen delivery and 
decrease oxygen consumption for these patients.

For classifying immune status in sepsis, conventional 
immunity-model [46, 47] built by inflammatory markers 
could not uncover immune cells dysfunction or/and dys-
homeostasis, the immunity risk score from current nom-
ograms could predict immune suppressed states based 
on immune cell subsets. Consistent with previous stud-
ies of immunity of sepsis, the Immunity-risk score dem-
onstrated that states of prolonged immune dysfunction 
leading to immune paralysis are more detrimental to sep-
sis survival [15]. Immune paralysis is characterized that 
naïve immune cells (M0 macrophages, B cells naïve and 

Table 2 The therapeutic recommendations for patients with high risk score

In Table 2, we provided the therapeutic recommendations for patients with high risk score identified by three sub-models. In addition, the numbers of features in each 
sub-model were also shown in Table 2

Models Therapeutic measures for patients with high risk score Number 
of 
features

Molecule‑risk Be diverted to intensive care unit for maximal intervention 8

Pathway‑risk 1.To improve oxygen delivery and decrease oxygen consumption;
2. More hemodynamic measurement to guide therapy.

9

Immunity‑risk 1. To promote immunity therapy such as interferon and thymosin;
2. To be on guard against superinfection occurring.

4

Fig. 6 Model evaluation on 3 sub‑models, Combined‑risk model 
and traditional indictors (PCT and IL8) in external validation cohort. 
The ROC indicated that the AUC of Molecule‑risk model, Pathway‑risk 
model, Immunity‑risk model, Combined‑risk model, IL8 and PCT were 
0.810, 0.818, 0.621, 0.873, 0.585 and 0.565
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T cells naïve) are hardly activated into mature inflam-
matory cells, accompanying with an absolutely increas-
ing proportion of immunosuppressive cells such as M2 
macrophages and Treg [15, 19, 36, 37]. Consequently, 
the patients with high Immunity-risk score should be 
alert of superinfection due to states of immune suppres-
sion. Subsequently, promoted immunity such as inter-
feron or thymosin and avoidance of probable infection 
such as removing inessential catheters could be consid-
ered possibly. On the contrary, as a therapy for improving 
cardiovascular responses to diverse stress stimulation, 
corticosteroids could be safely used for patients with low 
Immunity-risk score.

In addition, for rapid clinical application, Decision 
Tree algorithm of Combined-risk model was utilized to 
furthermore simplify the model, which could assist clini-
cians conveniently and efficiently [29].

The value of GSVA algorithm is a classical non-para-
metric and unsupervised functional enrichment analy-
sis [17, 18]. Because GSVA could not depend on interest 
gene subset such as differential genes but on the whole 
ranking of genes, GSVA has been demonstrated to pro-
vide better sensitivity to screen gene expression varia-
tions of tiny magnitude which perform coordinately in 
signal transduction pathway related genes [40, 41]. Con-
ventional ways to investigate immune cell disorders, such 
as immunohistochemistry and flow cytometry, depend 
on limited phenotypic markers, and sample disaggrega-
tion prior to experiments result in lost or damaged cells, 
which could change the conclusions of flow cytometry. 
CIBERSORT outperformed other ways for cell type iden-
tification of tissue and blood due to this computational 
approach reference to gene expression profiles of specific 
cell rather than one or two markers [19–21].

Overfitting problems unavoidably encountered in pre-
diction models, such as inflation of regression coefficients 
with while deflation of standard errors, which ultimately 
reducing both the parsimony of the model and the gener-
alizability of conclusions. Lasso algorithm was more effec-
tive for these problems especially in high-dimensional 
data such as gene expression profiles owing to stringency 
of lasso penalties. In addition, both backward and for-
ward stepwises selection with AIC could further reduced 
authentic predictor variables into the final model, and 
simultaneously preserved model performance.

Conclusions
As a secondary analysis of publicly available data, 
detailed information such as the severity, complications, 
and individual treatment of each patient could not be 
downloaded for further analysis. In addition, despite the 
present combined risk model performing well on one 

external validation, progressive research should be con-
ducted in the future.
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