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Abstract 

Background: Accurate, pragmatic risk stratification for postoperative delirium (POD) is necessary to target preventa-
tive resources toward high-risk patients. Machine learning (ML) offers a novel approach to leveraging electronic health 
record (EHR) data for POD prediction. We sought to develop and internally validate a ML-derived POD risk prediction 
model using preoperative risk features, and to compare its performance to models developed with traditional logistic 
regression.

Methods: This was a retrospective analysis of preoperative EHR data from 24,885 adults undergoing a procedure 
requiring anesthesia care, recovering in the main post-anesthesia care unit, and staying in the hospital at least 
overnight between December 2016 and December 2019 at either of two hospitals in a tertiary care health system. 
One hundred fifteen preoperative risk features including demographics, comorbidities, nursing assessments, surgery 
type, and other preoperative EHR data were used to predict postoperative delirium (POD), defined as any instance 
of Nursing Delirium Screening Scale ≥2 or positive Confusion Assessment Method for the Intensive Care Unit within 
the first 7 postoperative days. Two ML models (Neural Network and XGBoost), two traditional logistic regression 
models (“clinician-guided” and “ML hybrid”), and a previously described delirium risk stratification tool (AWOL-S) were 
evaluated using the area under the receiver operating characteristic curve (AUC-ROC), sensitivity, specificity, positive 
likelihood ratio, and positive predictive value. Model calibration was assessed with a calibration curve. Patients with no 
POD assessments charted or at least 20% of input variables missing were excluded.

Results: POD incidence was 5.3%. The AUC-ROC for Neural Net was 0.841 [95% CI 0. 816–0.863] and for XGBoost was 
0.851 [95% CI 0.827–0.874], which was significantly better than the clinician-guided (AUC-ROC 0.763 [0.734–0.793], 
p < 0.001) and ML hybrid (AUC-ROC 0.824 [0.800–0.849], p < 0.001) regression models and AWOL-S (AUC-ROC 0.762 
[95% CI 0.713–0.812], p < 0.001). Neural Net, XGBoost, and ML hybrid models demonstrated excellent calibration, while 
calibration of the clinician-guided and AWOL-S models was moderate; they tended to overestimate delirium risk in 
those already at highest risk.
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Introduction
Postoperative delirium (POD) is a common and seri-
ous complication of surgery [1], and is associated with 
numerous adverse events including prolonged length of 
stay, more frequent institutional discharge, higher read-
mission rates, functional decline, dependency in activi-
ties of daily living, and cognitive decline [2–9]. Many 
cases of POD can be prevented with multicomponent 
non-pharmacologic interventions [10], the Hospital 
Elder Life Program [11], or perioperative geriatric con-
sultations [12, 13]. Effective perioperative interventions 
combining delirium risk stratification with focused delir-
ium prevention care practices have been described [14], 
though further improvement in the discrimination of the 
delirium risk stratification tool used in this intervention 
[15] could allow for better targeting of finite resources 
to the patients who need them most. Since preventative 
interventions require significant time and energy from 
busy clinicians [16], improving and automating risk strat-
ification procedures is critically important.

Machine learning-derived risk prediction models 
have been developed to predict delirium in hospitalized 
patients [17], postoperative delirium in focused patient 
populations [18], non-delirium-related intraoperative 
complications [19, 20], and postoperative mortality [21], 
in addition to applications in many other contexts [22]. 
Machine learning (ML) methodology has the potential 
to improve upon existing POD risk prediction models in 
many important ways. Whereas existing delirium predic-
tion models tend to rely on well-known delirium risk fac-
tors such as age and cognitive impairment [23–25], ML 
allows for analysis of patterns in large amounts of data 
pragmatically collected in the electronic health record 
(EHR) to identify higher-order interactions that would 
be difficult to identify through traditional data analysis 
techniques [26]. In addition, increasingly feasible real-
time EHR-based applications of ML-derived predictions 
in clinical practice [22, 26] have the potential to con-
serve valuable human resources through automation of 
risk stratification procedures, since use of existing risk 
stratification tools have often required too much clinician 
input to enter clinical workflow [24].

We sought to develop and internally validate a ML-
derived model for the automated prediction of postoper-
ative delirium in a broad surgical patient population using 
only pragmatically collected EHR-based data elements 

available prior to the start of surgery. We compare the 
performance of two ML models (gradient boosting and 
artificial neural network) against both traditional logistic 
regression and the POD risk stratification tool currently 
used at our institution, hypothesizing that use of ML to 
model POD risk would outperform other methods.

Methods
This manuscript was prepared in accordance with the 
TRIPOD guidelines [27]. Approval for a retrospective 
review of the EHR was obtained by the University of Cali-
fornia, San Francisco Institutional Review Board (IRB 
#18-26,109), and the requirement for written informed 
consent was waived. The study was conducted in accord-
ance with all requirements outlined by the IRB.

Study population
This study included all encounters in patients ages 18 and 
over undergoing surgery or a procedure requiring anes-
thesia care and staying in the hospital at least overnight 
at either of two adult hospitals in a non-trauma tertiary 
care health system between December 2016 and Decem-
ber 2019. All adults were included to allow for applica-
tion of the model broadly in the perioperative setting. 
Moffitt-Long Hospital is the health system’s largest hos-
pital, housing a wide variety of surgical and procedural 
specialties including high volume neurosurgery and 
transplant surgery services. Surgical services at Mission 
Bay Hospital include various surgical subspecialties, pri-
marily focusing on cancer surgery. Procedures requiring 
anesthesia recovery outside of the main post-anesthesia 
care unit were excluded, as were patients who were dis-
charged on the same day as their procedure. Patients who 
had no POD assessments charted and patients missing 
data for at least 20% of input variables were also excluded.

Measures
Predictors
A total of 115 predictor variables derived solely from 
preoperative characteristics were given as input to each 
model (Additional  file  1, Table  S1). Variables included 
were selected by the authors from those used in a ML-
derived model developed to predict incident delirium 
in hospitalized medical patients [17]. Variables selected 
were relevant to surgical patients and consistently avail-
able in the EHR prior to surgery. Only preoperative 

Conclusion: Using pragmatically collected EHR data, two ML models predicted POD in a broad perioperative popu-
lation with high discrimination. Optimal application of the models would provide automated, real-time delirium risk 
stratification to improve perioperative management of surgical patients at risk for POD.
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variables were included to allow delirium prediction to 
occur at the start of surgery, so that anesthesia provid-
ers and surgeons would be able to immediately adjust 
the intraoperative and postoperative management strat-
egy. AWOL-S is an EHR-based risk stratification tool in 
which predefined locally-derived regression coefficients 
are applied to each of five terms [Age, ability to spell 
WORLD backward, Orientation to place, American Soci-
ety of Anesthesiologists Classification (iLlness severity), 
and procedure-specific Surgical risk] to calculate a pre-
dicted risk of POD for an individual patient [15]. Each of 
these individual terms was included as a predictor vari-
able for ML models.

Outcomes
The POD outcome was defined as any instance of Nurs-
ing Delirium Screening Scale (NuDESC) [28] score ≥ 2 
or positive Confusion Assessment Method for the Inten-
sive Care Unit (CAM-ICU) [29] recorded during the 
first seven postoperative days. Patients were assessed by 
their bedside nurse at least once every 12-h shift using 
NuDESC on acute care wards or CAM-ICU in the ICU. 
Bedside nurses were trained in delirium assessment as 
part of a hospital-wide delirium care program [30].

Data collection and preprocessing
All patient data were gathered from the EHR (Epic, 
Verona, WI) using a unique surgical encounter code. 
Missing numeric values were rare and were therefore 
substituted with the population mean [31], and missing 
categorical values were labeled as ‘unknown.’ The entire 
dataset was randomly split into a training dataset (80%) 
and a test dataset (20%) for model development. All 
numeric variables in the training dataset were rescaled 
such that absolute values were contained between 0 and 
1, so that numeric variables with higher absolute values 
would not be weighed inappropriately higher than those 
with lower absolute values. All categorical variables were 
converted into indicator variables with values of 0 (no/
absent) or 1 (yes/present). 20% of the training dataset 
(i.e., 16% of the overall dataset) was reserved for a vali-
dation dataset used to tune hyperparameters. The test 
dataset was left untouched throughout all model devel-
opment. After each respective model was fully devel-
oped, the numeric and categorical variables in the test 
dataset were normalized based on the same rules deter-
mined by the training dataset. The end result was the 
following: training dataset (15,926 patients), validation 
dataset (3982 patients), and test dataset (4977 patients).

Statistical analysis
Descriptive statistics and ML model development were 
performed using R [32] and Python, respectively. For 

numeric variables, differences in mean and standard 
deviation were tested with the t-test if parametric, and 
differences in median and interquartile range were tested 
with the Kruskal-Wallis test if non-parametric. For cat-
egorical variables, chi-square was used for comparisons, 
unless expected cell frequencies were less than 5, in 
which case Fisher’s exact test was used.

Model development
Each machine learning model approaches classification 
problems in a unique way. Therefore, individual models 
have relative strengths and weaknesses in making pre-
dictions. Because POD pathophysiology is complex with 
incompletely understood interactions between risk fac-
tors, we selected two ML models to allow us to identify 
the model that most accurately predicts POD using our 
rich dataset.

Gradient boosting
We used the eXtreme Gradient Boosting (XGBoost) algo-
rithm to train a decision tree-based model on the train-
ing dataset. XGBoost was chosen for its robustness to 
overfitting and interpretability of results. The validation 
dataset was used to fine-tune specific hyperparameters 
(learning rate = 0.01, maximum tree depth = 4, minimum 
child weight = 2, number of estimators = 1000, scaled 
positive weight = 1) with 10-fold cross-validation. Using 
the feature importance summary plot function of the 
SHapley Additive exPlanations (SHAP) package, we visu-
alized the 20 most influential prediction variables chosen 
by XGBoost [33].

Neural network
We used TensorFlow [34] to build a neural network con-
sisting of three sequential layers: a densely connected 
hidden layer, a dropout layer, and a sigmoid-based output 
layer. Neural network was chosen because of its ability to 
find complex interactions between variables. The neu-
ral network was trained on the training dataset in batch 
sizes of 1500 cases over 10 epochs. The validation dataset 
was used to determine proper weights to account for the 
unbalanced distribution of outcomes.

Multivariable logistic regression
Traditional logistic regression is one of the most widely 
used and accepted modeling methods in medicine, and 
performance of logistic regression has been competi-
tive to that of machine learning in many settings [35, 
36]. Using fewer risk features may allow for simpler, 
more interpretable, point-based models that are easier to 
implement into clinical practice. Thus, two multivariable 
logistic regression models were created for comparison 
to ML-derived models: one based on an existing POD 
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prediction model (“clinician-guided”), and one based on 
variables selected by ML (“ML hybrid”). We based the 
clinician-guided regression model on a 20-variable model 
predicting POD in older patients using data from the 
multi-institution American College of Surgeons National 
Surgery Quality Improvement Project (ACS NSQIP) 
database [37]. Seventeen of the 20 variables were avail-
able in our EHR; three (work relative value units, wound 
class, and surrogate consent) were not. In some cases, a 
surrogate variable with the same general clinical impli-
cation was substituted for the exact variable reported 
by Berian, et al., when data for the exact variable did not 
exist in our EHR (e.g., inability to spell WORLD back-
ward was used as a marker for preoperative cognitive 
impairment).

For the ML hybrid model, 18 out of the 20 predictor 
variables derived from the feature importance summary 
of an iteration of the XGBoost algorithm (using the fol-
lowing hyper-parameters in XGBoost model develop-
ment: learning rate = 0.05, maximum tree depth = 7, 
minimum child weight = 7, number of estimators = 150, 
scaled positive weight = 10) were included. Four variables 
which had considerable overlap were combined into two 
variables without changing the clinical implication [i.e., 
inpatient (risk) and outpatient (protective) patient sta-
tus, unable (risk) and able (protective) to spell ‘WORLD’ 
backwards].

Comparison to AWOL‑S
The ML-derived models were also compared to AWOL-
S, the POD risk stratification tool used in our institution. 
Risk stratification with AWOL-S is performed preopera-
tively for all adult surgical patients; a calculated probabil-
ity of delirium of 5% or greater is considered “high risk.” 
For those terms not already in the EHR (i.e., WORLD 
backward and orientation to place), assessments are per-
formed and documented by preoperative nurses. Sensi-
tivity, specificity, positive likelihood ratio, and positive 
predictive value of AWOL-S were calculated at a pre-
dicted POD risk (i.e., threshold or cutoff value) of 5%.

Model evaluation
Model performance was evaluated based on the area 
under the receiver operating characteristic curve (AUC-
ROC), and confidence intervals (CI) were derived from 
10-fold cross validation (CV) and DeLong’s method (DL) 
[38, 39]. For each ML model, an optimal decision thresh-
old, defined as the threshold at which the sum of sensitiv-
ity and (1-specificity) is greatest, was determined on the 
validation dataset for subsequent calculation of model 
sensitivity, specificity, positive likelihood ratio, positive 
predictive value, and negative predictive value. Because 
AWOL-S was previously validated on a separate dataset, 

cross validation was not applicable, and performance 
was evaluated on AUC-ROC with confidence intervals 
derived by DeLong’s method. A calibration plot was gen-
erated for each model.

Results
Twenty-nine thousand four surgical encounters were 
evaluated. After exclusion of 4119 encounters (1965 
patients with no delirium score ever recorded and 2154 
patients with > 20% missing variables), 24,885 surgi-
cal encounters were included in the analysis (Fig.  1). 
77,125/81,515 (94.6%) of total delirium assessments were 
performed using NuDESC, while the remainder were 
performed using CAM-ICU. The overall incidence of 
delirium was 5.3%. 325/4390 (7.4%) screens performed 
using CAM-ICU were positive, while 1373/77,125 (1.8%) 
screens performed using NuDesc were positive. Patients 
who developed delirium were older, more likely male, 
and had more comorbidities and a higher American Soci-
ety of Anesthesiologists Classification (Table 1). Patients 
developing delirium were also more likely to have under-
gone inpatient surgery, emergency surgery, and/or neu-
rological surgery.

In the test dataset, the AUC-ROC was 0.840 (95% CI 
0.825–0.855 by CV) and 0.841 (95% CI 0.816–0.863) by 
DL for Neural Network (Table  2, Fig.  2A.). AUC-ROC 
was 0.852 (95% CI 0.839–0.865) by CV and 0.851 (95% 
CI 0.827–0.874) by DL for XGBoost (Table 2, Fig. 2A.). 
Under the optimal threshold, Neural Network achieved 
a mean sensitivity of 72.9% (95% CI 69.1–76.7%), mean 
specificity of 77.5% (95% CI 76.2–78.7%), and mean posi-
tive likelihood ratio of 3.25 (95% CI 3.03–3.47). XGBoost 
achieved a mean sensitivity of 80.6% (95% CI 77.1–
84.1%), mean specificity of 73.7% (95% CI 72.4–74.9%), 
and mean positive likelihood ratio of 3.08 (95% CI 2.87–
3.29). Additional model characteristics and thresholds 
used for calculation of reported performance metrics are 
shown in Table 2. The 20 variables (out of the total pool 
of 115 variables) with the highest impact on XGBoost 
outcome prediction are pictured in Fig.  3A. Figure  3B 
and C demonstrate the XGBoost algorithm’s decision 
path for two individual patients. A calibration plot for 
each of the models is pictured in Fig.  2B. Neural Net-
work, XGBoost, and ML hybrid models demonstrated 
excellent calibration, while calibration of the clinician-
guided and AWOL-S models was moderate; they tended 
to overestimate delirium risk in those already at highest 
risk. We performed two sensitivity analyses: one includ-
ing patients age 65 and older, and a second to further 
examine the impact of including neurosurgery patients 
in the broad population model on delirium prediction. 
In both patient subgroups, AUC-ROC of the XGBoost 
model did not change significantly (65+ AUC-ROC 
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0.821 [95% CI 0.763–0.879] by CV and 0.820 [95% CI 
0.788–0.851] by DL; neurosurgery excluded AUC-ROC 
0.840 [95% CI 0.808–0.871) by CV and 0.837 [95% CI 
0.807–0.867] by DL) (Additional  file  2, Figs. S1.2 and 
S2.2, Tables S2.2 and S2.2).

The clinician-guided logistic regression model had an 
AUC-ROC of 0.746 (95% CI 0.718–0.775) by CV and 
0.763 (95% CI 0.734–0.793) by DL, mean sensitivity 
69.1% (95% CI 62.9–75.4%), mean specificity 65.5% (95% 
CI 64.3–66.7%), and mean positive likelihood ratio 2.01 
(95% CI 1.79–2.23) (Table  2, Fig.  2A.). The ML hybrid 
model had an AUC-ROC of 0.810 (95% CI 0.787–0.832) 
by CV and 0.824 (95% CI 0.800–0.849) by DL, mean sen-
sitivity of 74.7% (95% CI 69.8–79.6%), mean specificity 
of 73.5% (95% CI 72.1–74.9%), and mean positive likeli-
hood ratio of 2.84 (95% CI 2.46–3.09) (Table 2, Fig. 2A.). 
Coefficients and odds ratios from the two regressions are 
available in Additional file 1, Tables S3 and S4. AWOL-S 
had an AUC-ROC of 0.762 (95% CI 0.713–0.812 by DL), 
mean sensitivity of 78.2% (95% CI 66.0–89.3%), mean 
specificity of 60.0% (95% CI 57.0–63.0%), and mean posi-
tive likelihood ratio of 1.95 (95% CI 1.62–2.28 (Table 2, 
Fig. 2A.).

Discussion
We developed and internally validated two ML-derived 
risk prediction models which used preoperative data 
available in the EHR prior to the start of surgery to pre-
dict incident postoperative delirium in a broad surgical 

patient population. ML models offer better performance 
than traditional clinician-based regression models, both 
in this population and by comparison to published litera-
ture [40–42], implying that they could be used to more 
efficiently direct resources to patients at high risk com-
pared with existing models [15] and with a clinician-
guided logistic regression model derived on the same 
data. Further, a hybrid approach, using ML to select vari-
ables which were then input into a multivariable logistic 
regression, performed better than the purely clinician-
guided approach.

Both ML-derived models achieved high AUC-ROCs 
(0.841 for Neural Net and 0.851 for XGBoost), similar to 
other published ML-derived risk prediction models [17, 
43], and better than many risk prediction models spe-
cific for postoperative delirium [23, 24]. As opposed to 
most previously reported POD risk prediction models 
that focus on one particular surgical population [44], this 
model attempts to predict delirium in a broad surgical 
population over a wide age range. The inclusion of such 
a broad patient population was intentional, to make this 
a pragmatic tool for implementation in the periopera-
tive setting. When compared to a simplified regression 
approach in an overlapping nonspecific perioperative 
population from our institution, ML models offer sub-
stantial improvement in discrimination [15]. Perfor-
mance did not change significantly when models were 
rerun in patients over the age of 65 only, or when neu-
rosurgical patients were excluded, suggesting the models 

Fig. 1 Inclusion flow diagram
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Table 1 Participant Characteristics

Abbreviations: SD standard deviation, ASA American Society of Anesthesiologists
a Nine surgical services with the highest patient volume (out of 19 total services) are listed
b Three language categories with the largest number of patients (out of 8 total categories) are listed

Variable No Delirium
(n = 23,558)

Delirium
(n = 1327)

p‑value % Missing

Age (mean (SD)) 59.24 (15.29) 67.41 (15.02) < 0.001 0

Sex (%) 0

 Male 11,607 (49.3) 669 (50.4) 0.033

ASA Class (%) 0.7

 1 1196 (5.1) 6 (0.5) < 0.001

 2 11,522 (49.2) 319 (24.3) < 0.001

 3 9948 (42.5) 879 (67.0) < 0.001

 4 728 (3.1) 105 (8.0) < 0.001

Emergent Case (%) 2220 (9.4) 353 (26.6) < 0.001 0

Inpatient (%) 10,613 (45.1) 930 (70.1) < 0.001 0

Surgical Service (%)a 0

 Neurological Surgery 3391 (14.4) 420 (31.7) < 0.001

 Orthopedics Surgery 5911 (25.1) 278 (20.9) < 0.001

 General Surgery 4975 (21.1) 239 (18.0) 0.007

 Vascular Surgery 1081 (4.6) 127 (9.6) < 0.001

 Genito-Urologic Surgery 2356 (10.0) 47 (3.5) < 0.001

 Otolaryngology-Head and Neck Surgery 992 (4.2) 33 (2.5) 0.002

 Transplant Surgery 1122 (4.8) 26 (2.0) < 0.001

 Gynecologic Oncology 648 (2.8) 22 (1.7) 0.02

 Thoracic Surgery 540 (2.3) 16 (1.2) 0.01

Primary Language (%)b 0

 English 21,513 (91.3) 1195 (90.1) 0.124

 Spanish 992 (4.2) 45 (3.4) 0.166

 Chinese - Cantonese 315 (1.3) 36 (2.7) < 0.001

Unable to spell WORLD backwards (%) 1367 (5.8) 259 (19.5) < 0.001 0

Not oriented to place (%) 468 (2.0) 134 (10.1) < 0.001 0

History of Diabetes (%) 4537 (19.3) 385 (29.0) < 0.001 0

History of Chronic Kidney Disease (%) 2269 (9.6) 155 (11.7) 0.016 0

History of Heart Failure (%) 987 (4.2) 109 (8.2) < 0.001 0

Smoking History (%) 6241 (26.5) 522 (39.3) < 0.001 0

Table 2 Model Characteristics

Abbreviations: CI confidence interval, CV cross validation, DL DeLong’s method
a AWOL-S is pre-validated, therefore cross validation was not performed to derive confidence intervals

Model Cutoff Value AUC‑ROC
[95% CI]

Sensitivity
[95% CI]

Specificity
[95% CI]

PLR
[95% CI]

PPV
[95% CI]

NPV
[95% CI]

Neural Network 0.05 CV: 0.840 [0.825–0.855]
DL: 0.841 [0.816–0.863]

72.9%
[69.1–76.7%]

77.5%
[76.2–78.7%]

3.25
[3.03–3.47]

15.1%
[14.2–16.0%]

98.1%
[97.9–98.4%]

XGBoost 0.25 CV: 0.852 [0.839–0.865]
DL: 0.851 [0.827–0.874]

80.6%
[77.1–84.1%]

73.7%
[72.4–74.9%]

3.08
[2.87–3.29]

14.4%
[13.5–15.3%]

98.6%
[98.3–98.8%]

Clinician-Guided Regression 0.05 CV: 0.746 [0.718–0.775]
DL: 0.763 [0.734–0.793]

69.1%
[62.9–75.4%]

65.5%
[64.3–66.7%]

2.01
[1.79–2.23]

9.0%
[7.2–10.9%]

97.4%
[96.9–98.0%

ML Hybrid Regression 0.32 CV: 0.810 [0.787–0.832]
DL: 0.824 [0.800–0.849]

74.7%
[69.8–79.6%]

73.5%
[72.1–74.9%]

2.84
[2.46–3.09]

13.9%
[12.7–15.1%]

98.1%
[97.7–98.4%]

AWOL-Sa 0.05 DL: 0.762 [0.713–0.812] 78.2%
[66.0–89.3%]

60.0%
[57.0–63.0%]

1.95
[1.62–2.28]

9.4%
[6.8–12.3%]

98.1%
[96.8–99.1%]
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are robust to different specifications of the underlying 
derivation population.

Providing optimal care to patients at risk for delirium 
is a resource-intensive process which includes imple-
menting measures such as multicomponent non-phar-
macologic nursing care bundles and consultations from 
busy clinicians including pharmacists and rehabilitation 
professionals, whose time is a limited resource. A sche-
matic depicting how this screening tool would be used 
in our healthcare system is pictured in Fig. 4, which also 
highlights the extensive resources automatically trig-
gered by a high-risk delirium screen in our institution’s 
existing delirium prevention pathway [14, 45]. The care 
interventions were modeled after available guidelines for 
the prevention of postoperative delirium [1, 16, 46–48]. 
Recommendations common to nearly all these guide-
lines include performing preoperative cognitive screens 
and avoidance of high-risk medications. Postoperative 
components of our pathway, including use of multicom-
ponent bundles, treatment of underlying causes, early 
mobility, and medication review, are recommended by 
those guidelines addressing care in the postoperative 
period [1, 16, 46, 47]. Identification of the patients at 
highest risk of developing delirium is the critical step to 
patient entry into the pathway. Thus, by improving the 
performance of delirium screening models, we could not 
only better target these resources to benefit the highest 

risk patients, but also potentially improve healthcare 
value. Next steps needed to operationalize the model 
would include prospective and external validation of the 
model followed by integration of the model into the EHR 
for real-time use; such real-time applications of ML mod-
els have been previously described [19], demonstrating 
potential feasibility of this approach.

Reporting model discrimination as the sole evaluation 
metric of a model’s performance is a commonly cited 
weakness of ML studies [49], since other measures of 
performance which take prevalence into account may be 
more indicative of clinical applicability and importance. 
Both of our ML models provide similar discrimination, 
but we also report other model characteristics (i.e., sen-
sitivity, positive likelihood ratio, and positive predictive 
value) to address the potential for clinical applicability of 
our model. XGBoost and Neural Network both have high 
positive likelihood ratios, which would allow resource-
intensive interventions to be directed to patients at high 
risk for developing delirium. We selected thresholds to 
optimize sensitivity and positive likelihood ratio, rather 
than positive predictive value, since positive predictive 
value is more subject to disease prevalence, and the over-
all prevalence of delirium is small in our population. The 
low prevalence of delirium compromised the positive pre-
dictive value somewhat. Further, we took steps to maxi-
mize interpretability of the XGBoost model by using the 

Fig. 2 Model AUC-ROC curves and calibration plots. A Receiver Operating Characteristic curves for five POD prediction models. B Calibration plots 
for five POD prediction models. XGBoost (orange), Neural network (blue), Clinician-guided regression (green), ML hybrid regression (red), AWOL-S 
(purple)
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Fig. 3 Visualization of decisions made by the XGBoost algorithm. A Top 20 most influential variables used by XGBoost. Interpretation: Each dot 
represents a variable for an individual patient instance. Variables pictured to the right side of the y-axis influenced the model to predict delirium, whereas 
variables to the left of the y-axis influenced the model against prediction of delirium. Red signifies a higher absolute value (numeric variables) or yes/present 
(categorical variables), and blue signifies a lower absolute value (numeric variables) or no/absent (categorical variables). For example: Higher age (red color) 
influenced the model to predict delirium (right of y-axis), whereas lower age (blue color) influenced the model toward prediction of no delirium. Decision 
path for a true negative (B) and a true positive (C) delirium prediction by XGBoost for two individual patients. Interpretation: The algorithm begins at 
the center of the x-axis with a baseline value. The model considers each variable along the y-axis one at a time (values shown in parenthesis), to influence the 
model toward making a positive (vertical line moves toward the right) or negative (vertical line moves toward the left) delirium risk prediction. For example: 
In panel B, variables which significantly influenced the model toward a negative delirium prediction include outpatient surgery, ASA class 1, low fall risk, not 
neurosurgery, and short case length. In panel C, variables which significantly influenced the model toward a positive delirium prediction include not oriented 
to place, older age, ASA class 4, unable to rate pain using numeric assessment scale, high pressure ulcer risk, unable to spell ‘WORLD’ backwards, and high 
fall risk. Abbreviations: ASA, American Society of Anesthesiologists; ICD-10, International Classification of Diseases, 10th revision; ICD-10 F00-F99, mental 
and behavioral disorders; kg, kilograms; ICD-10 Z00-Z99, factors influencing health status and contact with health services; ICD-10 G00-G99, diseases of 
the nervous system; ERAS, enhanced recovery after surgery; ICD-10 C00-D48, neoplasms; ICD-10 I00-I99, diseases of the circulatory system; ICD-10 N00-N99, 
disease of the genitourinary system 

Fig. 4 Role of automated delirium screen in our institution’s postoperative delirium prevention care pathway. Figure legend: A high-risk delirium 
screen triggers a set of care modifications in the preoperative, intraoperative, and postoperative phases of care. Particularly in the postoperative 
phase, these modifications require time and input from busy clinicians
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open-source SHAP package to visualize the global pre-
dictors that were deemed important by the algorithm as 
well as its individual, patient-centered decision approach 
to delirium prediction. These types of visualizations are 
helpful to increase clinician confidence in ML-derived 
predictions if they are to be used to augment clinical deci-
sion making [50]. The 20 most influential features iden-
tified by the XGBoost model generally align well with 
well-known risk factors for delirium, as discussed further 
below, lending credibility to the model’s prediction.

Not surprisingly, both ML models perform better than a 
traditional logistic regression analysis using delirium risk 
predictors selected from the 20-predictor model derived 
from multivariable analysis of the multi-institutional ACS-
NSQIP dataset [37]. The ML hybrid model using the pre-
dictors derived from the XGBoost feature importance 
summary also outperforms the expert clinician regression 
model. This result suggests that ML-derived models are 
capable of uncovering higher-order interactions between 
variables that are difficult to identify using traditional 
regression approaches. Most of the predictors recovered 
by XGBoost (e.g., age, surgery type, cognitive impairment, 
comorbidities) are consistent with known predictors of 
POD [37, 51, 52]. Protective factors against delirium not 
frequently described but important to the model include 
having private insurance and a self-reported history of 
alcohol use, and a self-reported history of recent falls. It 
is likely that such features reflect the existence of associa-
tions which are not otherwise accounted for by the model. 
For example, those individuals with private insurance may 
have a higher socioeconomic status and/or education level. 
Patients capable of self-reporting falls may have better cog-
nitive function when compared with those who are unable 
to do so. While alcohol consumption is a well-known risk 
factor for delirium [53], self-reported alcohol consump-
tion has been associated with better functional outcomes 
including lower frailty in females [54] and lower likelihood 
of mobility limitation or arm function limitation independ-
ent of muscle strength in older men [55]. Other authors 
have suggested that the protective effect of moderate alco-
hol use is explained by social or lifestyle factors [55]; these 
may not be captured by other terms in the ML model. 
However, the exact mechanisms underlying these associa-
tions are unknown, and will need to be confirmed by fur-
ther studies.

There are important limitations to consider when inter-
preting our findings. First, NuDESC ≥2 was used as the 
definition of delirium for patients on acute care wards. 
NuDESC is a delirium screening (not diagnostic) tool that 
was originally developed in a medical patient population 
[28]. It has been reported to have a wide sensitivity range 
to detect delirium in older surgical patients on the wards 
and in the post-anesthesia care unit, but specificity in 

surgical patients is reported to be 80% or greater [56, 57]. 
The high specificity of NuDESC in surgical patients sug-
gests that the more severe, most clinically relevant cases, 
are detected. Despite reasonable concern for both false 
negative (i.e., undercounting the delirium outcome due 
to low sensitivity) and false positive (i.e., patients screen-
ing positive with NuDESC would not have delirium when 
formally assessed) results, it was necessary to take a prag-
matic approach using the delirium screening procedures 
in place in our institution, due to the large training data-
set needed to conduct this machine learning analysis. 
Comparison of our study to a recently published study by 
Racine, et al. [58] illustrates this point. This study evalu-
ated the performance of five ML algorithms to predict 
POD in a much smaller group of surgical patients (560 
older adults from an existing dataset). ML algorithms had 
a reported AUC-ROC 0.53–0.71, which was not superior 
to the logistic regression model reported in the study, 
despite using an in-person examination by experienced 
interviewers with the Confusion Assessment Method 
[59] and medical chart review to detect delirium. This 
comparison highlights the importance of an adequate 
training dataset size [60], among other things, to conduct 
high-quality machine learning analyses. Even with the 
large sample size in our study, discrimination and other 
aspects of model performance such as positive predictive 
value and calibration would likely be further improved 
with even more data and a larger number of events per 
predictor because our outcomes occur rarely [61].

Additional limitations include the lower POD rate 
(5.3%) in our population, which likely reflects inclusion of 
a younger population and all types of surgeries including 
those known to be associated with lower risk of delirium 
(i.e., gynecologic, urologic, plastics), in addition to robust 
delirium prevention procedures in our hospital system. 
When the analysis is excluded to patient age 65 and over 
the POD rate increases to 7.7%, which remains lower 
than commonly reported POD rates, likely still reflect-
ing inclusion of patients having lower-risk surgery and 
staying in the hospital only overnight in our study popu-
lation. Patients with no POD assessments were excluded 
from the analysis; it is possible that missingness is non-
random for these patients. The fact that this was a single 
center study may introduce bias and limit generalizability. 
We conducted a sensitivity analysis to determine whether 
the high prevalence of neurosurgical patients in our pop-
ulation may have influenced the model, as this popula-
tion tends to be at high risk of delirium despite younger 
age and fewer medical comorbidities. We found that the 
discrimination of the machine learning models was not 
significantly affected by exclusion of the neurosurgical 
population, suggesting that the model is able to conclude 
on delirium risk based on other risk features. In addition, 
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there were limitations to gathering certain types of data 
from the EHR at our institution. Laboratory data is a good 
example; many of our patients either have no preoperative 
laboratory data available, or we are unable to easily extract 
this data from the EHR because results are housed in a 
scanned text report from an outside facility. There may 
also be potentially important delirium risk predictors (e.g., 
frailty indices) that are not included in our model because 
they are not routinely part of the preoperative examina-
tion at our institution. Expansion of the terms included 
in the ML model and external validation on a multicenter 
dataset would help to address these shortcomings.

Conclusion
We developed and internally validated two ML-derived 
models that predict POD in a broad perioperative pop-
ulation using pragmatically collected EHR data. The 
XGBoost model offers the ability to understand the most 
impactful predictors and the process by which the algo-
rithm arrives at a prediction for an individual patient. A 
ML-hybrid approach outperformed a clinician-guided 
logistic regression, suggesting that ML has the potential 
to uncover POD predictors that were previously over-
looked by clinicians. As real-time clinical implementa-
tion of ML models becomes increasingly feasible, POD 
prediction using ML -- allowing targeted resource direc-
tion toward patients at the highest risk -- may be an 
important focus for improving perioperative care.
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