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Abstract

Background: In acute respiratory distress syndrome (ARDS), lung recruitment maneuvers can recruit collapsed
alveoli in gravity-dependent lung regions, improving the homogeneity of ventilation distribution. This study used
electrical impedance tomography to investigate the physiological effects of different recruitment maneuvers for
alveolar recruitment in a pig model of ARDS.

Methods: ARDS was induced in ten healthy male pigs with repeated bronchoalveolar lavage until the ratio of
arterial partial pressure of oxygen (Pa0O,) of fraction of inspired oxygen (P/F) was < 100 mmHg and remained stable
for 30 min (Tarps). ARDS pigs underwent three sequential recruitment maneuvers, including sustained inflation,
increments of positive end-expiratory pressure (PEEP), and pressure-controlled ventilation (PCV) applied in random
order, with 30 mins at a PEEP of 5 cmH,O between maneuvers. Respiratory mechanics, hemodynamics, arterial
blood gas, and electrical impedance tomography were recorded at baseline, Tarps, and before and after each
recruitment maneuver.

Results: In all ten pigs, ARDS was successfully induced with a mean 2.8 + 1.03 L bronchoalveolar lavages. PaO,, P/F,
and compliance were significantly improved after recruitment with sustained inflation, increments of PEEP or PCV
(all p < 0.05), and there were no significant differences between maneuvers. Global inhomogeneity index
significantly decreased after recruitment with sustained inflation, increments of PEEP, or PCV. There were no
significant differences in global inhomogeneity before or after recruitment with the different maneuvers. The
decrease in global inhomogeneity index (AGI) was significantly greater after recruitment with increments of PEEP
compared to sustained inflation (p =0.023), but there was no significant difference in AGl between increments of
PEEP and PCV or between sustained inflation and PCV.

Conclusion: Sustained inflation, increments of PEEP, and PCV increased oxygenation, and regional and global
compliance of the respiratory system, and decreased inhomogeneous gas distribution in ARDS pigs. Increments of
PEEP significantly improved inhomogeneity of the lung compared to sustained inflation, while there was no
difference between increments of PEEP and PCV or between sustained inflation and PCV.
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Background

Acute respiratory distress syndrome (ARDS) is a clinical
syndrome characterized by a decrease in functional lung
size [1]. The pathophysiology of ARDS includes diffuse
alveolar collapse [2] and acute exudative lesions distrib-
uted in a gravitationally dependent gradient [3]. Al-
though this disease was first defined almost 50 years ago,
the hospital mortality rate for patients with severe ARDS
remains high, estimated at 46% [4].

Lung recruitment maneuvers, including sustained infla-
tion, increments of positive end-expiratory pressure (PEEP),
and pressure-controlled ventilation (PCV), can improve
oxygenation and increase respiratory system compliance in
patients with ARDS. Recruitment maneuvers can recruit
collapsed alveoli in gravity-dependent lung regions and im-
prove the homogeneity of ventilation distribution, but may
cause alveolar overdistention and lead to ventilator-
associated lung injury in non-dependent regions [5]. A ran-
domized controlled trial showed that sustained inflation
and PCV improved the arterial partial pressure of oxygen
(PaO,)/fraction of inspired oxygen (FiO,) (P/F) in 40 pa-
tients with ARDS, and the P/F was significantly increased
after PCV compared to sustained inflation [6]. However,
dynamic regional information on changes in lung ventila-
tion after recruitment maneuvers has not been reported.

Recruitment and overdistention during lung recruitment
have been evaluated by chest X-ray, computed tomog-
raphy, and lung ultrasound. Electrical impedance tomog-
raphy (EIT) is a non-invasive, radiation-free technique
that can be used for bedside monitoring of lung tissue aer-
ation during breathing. EIT allows semi-continuous, real-
time measurement of changes in electrical resistivity
within lung tissue and provides information on regional
ventilation distributions [7, 8]. Domenighetti [9] reported
that EIT can be used to measure impedance changes and
assess regional ventilation distribution during tidal breath-
ing. The EIT-based global inhomogeneity index has been
developed as a tool to quantify tidal volume (Vt) distribu-
tion within the lung [10].

Previous research has focused on the effect of recruit-
ment maneuvers on gas exchange and hemodynamics.
Literature describing the influence of recruitment ma-
neuvers on global inhomogeneity and regional ventila-
tion distribution is scarce. This study used EIT to
investigate the physiological effects of different recruit-
ment maneuvers that achieve the same maximum pres-
sure for alveolar recruitment in a porcine model of
ARDS. Findings may inform clinical decision-making
around recruitment maneuvers while minimizing the
risk of barotrauma in individuals with ARDS.

Methods
The protocol for this study was approved by the Science
and Technological Committee and the Animal Use and
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Care Committee of the University School of Medicine,
Nanjing, China. Domestic pigs (Sus scrofa domesticus)
were purchased from a local farmer (Qinglongshan ani-
mal breeding farm, JiangShu, China). Animal experi-
ments were performed in accordance with the Guidance
for the Care and Use of Laboratory Animals [11].

Animal preparation

Pigs were housed on straw in a cage and fed with a
standard diet [12]. Prior to the study, the animals were
fasted overnight. Ten healthy male pigs (body weight
50.3 £ 1.5kg) were anesthetized with an intramuscular
injection of ketamine hydrochloride (3 mg/kg), atropine
(2 mg/kg) and fentanyl citrate (2 mg/kg) and an intraven-
ous infusion of propofol (1-2 mg/kg-h), fentanyl citrate
(0.5-1 pg/kgh), midazolam (0.1 mg/kg-h), and atracur-
ium (0.4 mg/kg-h) and placed in the supine position on a
thermo-regulated operating table. During surgery, pigs
received balanced electrolyte solution (5 ml/kg/h), pigs’
body temperature was maintained at 37.5°C, and pigs’
mean arterial pressure (MAP) was maintained > 60
mmHg with rapid infusions of 0.9% saline (20 ml/kg), as
needed.

Following anesthesia, tracheotomy was performed, and
pigs were mechanically ventilated (Servo-i ventilator,
Solna, Sweden) using volume-control mode at a Vt of 6
mL/kg, a respiratory rate of 30 breaths/min, FiO, of 1.0,
a inspiration-to-expiration time ratio (L:E) of 1:2, and
PEEP of 5 cmH,O. Arterial blood samples were collected
using a thermistor-tipped Pulse Contour Cardiac Output
(PiCCO) catheter (Pulsion Medical System, Munich,
Germany) inserted in the right femoral artery. Central
venous pressure (CVP) and pulmonary arterial wedge
pressure (PAWP) were measured using a Swan—Ganz
catheter (Arrow International, Reading, PA, USA)
inserted in the internal jugular vein. Cardiac output was
measured with the Swan—Ganz catheter, and MAP was
monitored with the PiCCO catheter.

Experiment protocol
Baseline measurements (Tguseline) Were made after pigs
had stabilized for 30 min. Subsequently, a pig model of
ARDS was established using bilateral lung lavage with
isotonic saline (30 ml/kg; 38 °C) infused through a fun-
nel. Negative pressure was applied to the proximal por-
tion of an endotracheal tube to remove excessive fluid.
Alveolar lavage was repeated every 10 min until the P/F
ratio decreased to less than 100 mmHg and remained
stable for 30 min (T srps); then, FiO, was set at 0.4.
ARDS pigs underwent three sequential recruitment
maneuvers, including sustained inflation, increments of
PEEP and PCV applied in random order according to a
random number table, with 30 mins at a PEEP of 5
cmH,O between maneuvers (Fig. 1). Circulatory and
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Fig. 1 Flowchart of study design. ARDS pigs underwent three sequential recruitment maneuvers applied in random order according to a random
number table, with 30 mins at a PEEP of 5 cmH,0O between maneuvers. Respiratory mechanics, hemodynamic parameters, arterial blood gas and
EIT were recorded at Tpaselines Tarps, and before and after each recruitment maneuver

lung mechanics recovered in 30 min after recruitment
maneuvers [13] and a PEEP of 5 ¢cmH,O represented
physiologic PEEP. Sustained inflation was performed
using continuous positive airway pressure (CPAP) held
at 40 cmH,O for 40s [14]. For increments of PEEP,
PEEP was increased from 5 cmH,O to a maximum of 40
cmH,O in 5 cmH,O increments, with each increment
lasting 30s, and retuned to 5 cmH,O in the reverse
process. For PCV, peak pressure was 40 cmH,0, inspira-
tory to expiratory ratio was 1:2, and PEEP was 20
c¢cmH,O for 2 min. For increments of PEEP and PCV, re-
spiratory rate was set to 30 breaths/min. Respiratory me-
chanics, hemodynamic parameters, arterial blood gas,
and EIT were recorded at Tpgugelines LTarps, and before
and after each recruitment maneuver. MAP, CVP, and
PAWP were monitored using calibrated pressure trans-
ducers. Blood gases were evaluated with an automated
blood gas analyser (Nova M; Nova Biomedical, Waltham,
MA, USA).

EIT measurements and analysis

EIT measurements (PulmoVista 500; Drager Medical
GmbH, Liibeck, Germany) were performed for 3 min
each at Tpuselines Tarps, and before and after each re-
cruitment maneuver as previously described [15]. EIT
data were generated by applying small alternate electrical
currents through 16 electrodes located equidistant apart
on a belt positioned around the pigs’ thorax, 5 cm above
the xyphoid process. A reference electrocardiogram
(ECG) electrode was positioned on the abdomen.
Current applications and voltage measurements were
automatically selected to be compatible with the image
reconstruction algorithm. The images were continuously
recorded and reconstructed at 40 Hz (Draeger EIT Data
Analysis Tool 6.1).

Four regions of interests (ROI) of the same size and
shape consisting of contiguous pixels were identified
within EIT images obtained during tidal breathing. A
cross section of the lung (ventral to dorsal) was divided
into four equal parts, namely ROI1, ROI2, ROI3 and
ROI4. The upper quarter corresponded to ROI1 and the

second quarter from the top to the bottom corresponded
to ROI2. The third quarter and the fourth quarter re-
spectively corresponded to ROI3 and ROI4. ROI1 and 2
correspond to non-dependent regions and ROI3 and 4
correspond to  gravity-dependent regions (Add-
itional file 1) [16]. For each breathing cycle, the imped-
ance change of the lung was calculated as the impedance
difference between end-inspiration and end-expiration
of the transverse section image. AZro; was defined as
the impedance change of an ROI [5]. EIT-estimated re-
gional compliance was calculated as AZroy/driving pres-
sure [17]. Tidal volume distribution within the lung was
quantified using the global inhomogeneity index, as pre-
viously described [18], and analysis of the global in-
homogeneity index was performed using customized
software developed by Zhao (evaluation_perfusion.exe).
For each breathing cycle, the median value of a tidal
image, in which each pixel represented the difference in
impedance between end-inspiration and end-expiration,
was calculated. The absolute difference between the me-
dian value and every pixel value was summed to indicate
the variation in the Vt distribution. The global inhomo-
geneity index was adjusted by normalization to the sum
of the impedance values. A smaller global inhomogeneity
index represented a more homogeneous distribution,
and a larger global inhomogeneity index indicated a
more inhomogeneous ventilation. The decrease in global
inhomogeneity index (AGI) with each recruitment man-
euver was calculated as the difference in global inhomo-
geneity index before and after recruitment.

General anesthesia was maintained throughout the
study. After completion of the experiments, the animals
were in deep anesthesia with propofol (2 mg/kgh), fen-
tanyl citrate (1 pg/kg-h), midazolam (0.1 mg/kg-h), and
atracurium (0.4 mg/kg-h). They were euthanized by a
bolus injection of thiopental (0.1 g/kg) intravenously.

Statistical analyses

Statistical analyses were performed using SPSS v20 (Chi-
cago, IL, USA). Differences in global inhomogeneity and
changes in global and regional end-expiratory lung
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impedance among different recruitment maneuvers were
investigated. Comparisons were made between values
obtained before and after each recruitment maneuver.
For non-normally distributed data, results are expressed
as median and interquartile range, and comparisons
were made with the Wilcoxon rank test. For data that
was normally distributed, results are expressed as mean
and standard deviation, and comparisons were made
with paired samples t tests and Bonferroni correction.
p <0.05 was considered statistically significant.

Results

In all ten pigs, ARDS was successfully induced with a
mean 2.8+ 1.03L (2800 + 1032.80 ml) bronchoalveolar
lavages. Mean P/F was significantly decreased after the
final lavage (81.69 + 55.79 mmHg) compared to baseline
(362.48 + 117.38 mmHg).

There were no significant differences in hemodynamic
parameters after recruitment with the different maneu-
vers (Table 1). No animals died during the experiments.

PaO,, arterial oxygen saturation, and P/F were signifi-
cantly improved after recruitment with sustained infla-
tion, increments of PEEP or PCV (all p < 0.05), and there
were no significant differences between maneuvers. The
recruitment maneuvers had no effect on PaCO, or pH
(Table 1).

Overall respiratory system compliance was signifi-
cantly increased after recruitment with sustained infla-
tion, increments of PEEP, or PCV (p <0.05) (Table 1).
The recruitment maneuvers had no significant effect on
compliance in non-gravity-dependent lung regions.
Compliance was significantly increased in gravity-
dependent lung regions after lung recruitment with
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increments of PEEP or PCV (prelP 0.74+0.37 au/
c¢cmH,O vs. postlP 2.51+1.80 au/cmH,0, p=0.025;
prePCV 0.75 £0.36 au/cmH,0 vs. postPCV 2.78 £ 1.65
au/cmH,0, p = 0.012), but there were no significant dif-
ferences in compliance between maneuvers (Fig. 2).

Global inhomogeneity index was significantly de-
creased after recruitment with sustained inflation, incre-
ments of PEEP, or PCV (preSI 0.55 + 0.14u vs. postSI
0.42 £ 0.040; preIP 0.62 +0.19u vs. postIP 0.42 +0.07u;
prePCV 0.60 = 0.09u vs. postPCV 0.4431 + 0.05u; all p <
0.001) (Fig. 3). The AGI was significantly greater after
recruitment with increments of PEEP compared to sus-
tained inflation (p =0.023), but there was no difference
in AGI between increments of PEEP and PCV or be-
tween sustained inflation and PCV (Fig. 4).

Discussion

This study used EIT to investigate the physiological ef-
fects of different recruitment maneuvers that achieve the
same maximum pressure when held for different time
spans, including sustained inflation, increments of PEEP
and PCV, for alveolar recruitment in a pig model of
ARDS. Findings showed that these recruitment maneu-
vers increased oxygenation and compliance in overall
and gravity-dependent lung regions, and decreased in-
homogeneous gas distribution in the ARDS lung, with
no adverse effects on hemodynamics immediately after
the maneuver. In a previous study [19], recruitment ma-
neuvers transiently but profoundly depressed cardiac
output in three models of acute lung injury. These re-
sults imply that a lung recruiting maneuver should be
applied with caution, especially when using sustained in-
flation in the setting of pneumonia.

Table 1 Hemodynamic and oxygenation parameters before and after recruitment maneuvers

S| P PCcv

Before After p Before After p Before After p
HR (BPM) 89.1 £ 2532 97.5+31.17 0517 904 + 3940 96.9 + 46.84 0950 938 + 3844 94.1 £ 41.04 0.987
MAP (mmHg) 1021 £ 2314 927 £ 1771 0.321 1092 £ 1900 968 + 23.93 0455 109.1 £ 2026 96.6 + 23.53 0.219
CVP (mmHag) 7.62 £ 337 881 +3.12 0420 745+ 291 9.10 £ 472 0523 742+ 267 946 + 341 0.161
PAWP (mmHg) 881 £ 494 10.72 + 440 0376 934 +4.08 11.62 + 4.88 0349 917 367 10.83 + 4.59 0372
CO (L/min) 474 £ 155 445 + 135 0664 474+ 211 446 + 163 0733 453+ 167 448 + 163 0.945
pH 728 £0.12 729 £0.12 0.95 727 £0.13 730 £0.12 0627 727 +0.12 731 +£0.12 0468
PaCO, (mmHg) 5256+ 1382 4824 +13.20 0484 5582+ 1749 4594 +13.82 0206 562 +16.15 46.09 + 13.70 0.568
Pa0O, (mmHg) 8162 +2236 14583 +2686" 0000 7822 +2428 16798 +3685° 0000 7754 +2469 15583 +50.85"  0.000
Sa0, 86.77 + 8.28 96.46 + 2.05° 0.002 8491 £825 97.57 +1.9¢6° 0.000 8463 +£808 94.93 + 6.52° 0.006
P/F (mmHg) 8162 £2236 14583 +£2686" 0000 7822 +2428 16798 +3685° 0000 7754 +2469 15583 +50.85°  0.000
Cr (ml/cmH,0) 1334 + 3.66 24.26 + 8.00° 0.001 12.88 + 3.20 27.51 + 799° 0.000  13.01 +3.09 2667 + 860° 0.000
HCO3 (mmol/L)  24.13 +2.99 23.02 £ 3.25 0437 248 £373 2208 +3.79 0.144 2501 £ 333 22.54 + 390 0.148

HR heart rate; MAP mean arterial pressure; CVP central venous pressure PAWP pulmonary artery wedge pressure; CO cardiac output; PaCO, partial pressure of

arterial carbon dioxide; PaO, partial pressure of arterial oxygen; SaO, arterial oxygen saturation; P/F ratio of partial pressure of arterial oxygen to fraction of

inspired oxygen; Cr respiratory system compliance; S/ sustained inflation; /P increments of PEEP; PCV pressure-controlled ventilation;

@< 0.05 versus Before
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Fig. 2 Compliance in non-gravity-dependent (a) and gravity-dependent (b) lung regions. Compliance in different regions was calculated by
dividing AZgo, by tracheal pressure changes assuming no flow at the end of inspiration and expiration. Compliance = AZgo/driving pressure. °p <
0.05, comparison between before and after recruitment maneuver. Sl, sustained inflation; IP, increments of PEEP; PCV, pressure-controlled
ventilation; RM, recruitment maneuvers; RO, regions of interest; A Zgo, the regional impedance change for a ROI

Patients with ARDS can suffer from inhomogeneous
gas distribution, which leads to ventilation—perfusion
mismatching, a high dead-space fraction, and the poten-
tial for ventilator-induced lung injury (VILI). Recruit-
ment maneuvers aim to open collapsed alveoli and
improve oxygenation and respiratory system compliance.
However, recruitment maneuvers can over-distend aer-
ated alveoli, and ventilation at high inflation pressures
can lead to VILL

Heterogeneous lung structure (i.e, collapsed and over-
expanded contiguous lung regions) is increasingly recog-
nized as a key risk factor for inhomogeneous gas
distribution, VILI, and mortality in mechanically venti-
lated patients [20]. Recent studies showed that the ex-
tent of lung inhomogeneities increase with the severity
of ARDS [21], and a protective ventilatory strategy may

not be sufficient to minimize VILI in patients with
ARDS whose disease process is characterized by an in-
homogeneous distribution of pulmonary lesions that in-
cludes a small, nondependent, normally aerated
compartment and a large, dependent, nonaerated com-
partment [22, 23].

In the present study, the inhomogeneous distribution
of lung alterations in the pig model of ARDS was dir-
ectly assessed using EIT. EIT has several advantages
compared to established imaging techniques such as
computed tomography as it is radiation free and applic-
able at the bedside; however, computation of the global
inhomogeneity index is not a bedside technique as it re-
quires offline measurements. In previous studies, Zhao
[17] et al. developed the global inhomogeneity index to
quantify the spatial extent and dispersion in the
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Fig. 3 ElT-based global inhomogeneity index with recruitment A: Sl; B: IP; C: PCV. Recruitment maneuvers were performed in the same pig. The
figure was exported by a data analysis tool, and the scales cannot be adjusted. Blue lines indicate rescaled global impedance, and red circles
indicate the global inhomogeneity index. The global inhomogeneity index increased during recruitment with PCV, and varied during recruitment
with Sl and IP. The global inhomogeneity index was significantly decreased after recruitment with SI, IP, or PCV. S|, sustained inflation; IP,
increments of PEEP; PCV, pressure-controlled ventilation; Gl, global inhomogeneity
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distribution of tidal breath, reporting that a larger global
inhomogeneity index reflected more inhomogeneity be-
tween lung units. A tidal EIT image is generated and vari-
ations in pixel values are used as an indicator of the
inhomogeneity of air distribution during tidal ventilation
[17]. In the present study, we used the global inhomogen-
eity index as a direct representation of global inhomogen-
eity in tidal ventilation in ARDS pigs. As the global
inhomogeneity index is 040+0.05 in patients under
anesthesia without pulmonary disease [17], the global in-
homogeneity index was expected to be >0.45 in our ex-
perimental animals. We assessed the change in
inhomogeneity with various recruitment maneuvers. Pre-
vious studies have shown different recruitment maneuvers
are associated with differences in oxygenation, respiratory
system compliance, hyperinflation, and hemodynamics
[13, 24-26]. However, a ventilation strategy with aggres-
sive lung recruitment may increase mortality in patients
with ARDS [27]. The present study showed that incre-
ments of PEEP significantly improved inhomogeneity of
the lung compared to sustained inflation in ARDS pigs,
while there was no difference between increments of PEEP
and PCV or between sustained inflation and PCV. These
data suggest that evaluating the effect of recruitment ma-
neuvers with EIT could play a role in minimizing VILL
Results of this study should be extrapolated to the clinical
setting with caution, considering the differences in the
shape of the thorax between pigs and humans. Clinical tri-
als are required to evaluate the efficacy and safety of re-
cruitment maneuvers in patients with ARDS, and current
evidence does not support the use of recruitment maneu-
vers in clinical practice.

Our study was associated with several limitations.
First, we measured hemodynamic parameters after not
during recruitment maneuvers. A previous study [19] re-
corded hemodynamic parameters during and after

recruitment maneuvers. Cardiac output was transiently
decreased during recruitment maneuvers, there were no
sustained hemodynamic effects following recruitment
maneuvers, and no difference was found among recruit-
ment maneuvers, which was consistent with our re-
search. Second, the relative impedance changes
monitored by EIT may have been affected by cardiac
movement. Errors in the reconstruction algorithm and
resorption atelectasis could not be measured as EIT was
used for monitoring dynamic ventilation distribution.
Third, the decrease in global inhomogeneity index in the
different ROIs would be very informative. Unfortunately,
our analytical software can only generate a global value.
Last, maximal recruitment of the lung was not achieved
with any maneuver. Failure to achieve maximal recruit-
ment of the lung would affect monitoring of end-
expiratory lung impedance. A peek pressure of 40
c¢cmH,0 may not have been sufficient for opening certain
alveoli in ARDS pigs. Borges [28] et al. reported that
when PEEP was set to 25cm H,O in patients with
ARDS, producing peak airway pressures of 40 cm H,O,
lung recruitment was approximately 67%. When peak
airway pressures of 60 cm H,O were reached, lung re-
cruitment was approximately 87%. Maximal recruitment
would further improve the heterogeneity of the lung, but
with a concrete risk of damaging the nondependent nor-
mally aerated compartments.

Conclusions

This study used EIT to show that different recruitment
maneuvers that achieve the same maximum pressure, in-
cluding sustained inflation, increments of PEEP, and
PCV, increased oxygenation and overall and EIT- esti-
mated regional compliance, and decreased inhomogen-
eous gas distribution. Increments of PEEP significantly
improved inhomogeneity of the lung compared to
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sustained inflation and PCV. Further studies are needed
to confirm the clinical significance of these findings.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/512871-020-01164-x.

[ Additional file 1. Schematic diagram of EIT image partitioning. ]
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