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Non-invasive cardiac output measurement
with electrical velocimetry in patients
undergoing liver transplantation:
comparison of an invasive method with
pulmonary thermodilution
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Abstract

Background: The goal of this study was to evaluate the accuracy and interchangeability between continuous
cardiac output (CO) measured by electrical velocimetry (COEv) and continuous cardiac output obtained using the
pulmonary thermodilution method (COPAC) during living donor liver transplantation (LDLT).

Method: Twenty-three patients were enrolled in this prospective observational study. CO was recorded by both
two methods and compared at nine specific time points. The data were analyzed using correlation coefficients,
Bland-Altman analysis for the percentage errors, and the concordance rate for trend analysis using a four-quadrant
plot.

Results: In total, 207 paired datasets were recorded during LDLT. CO data were in the range of 2.8–12.7 L/min
measured by PAC and 3.4–14.9 L/min derived from the EV machine. The correction coefficient between COPAC and
COEv was 0.415 with p < 0.01. The 95% limitation agreement was − 5.9 to 3.4 L/min and the percentage error was
60%. The concordance rate was 56.5%.

Conclusions: The Aesculon™ monitor is not yet interchangeable with continuous thermodilution CO monitoring
during LDLT.

Trial registration: The study was approved by the Institutional Review Board of Chang Gung Medical Foundation
in Taiwan (registration number: 201600264B0).
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Background
During the living donor liver transplantation (LDLT), the
hemodynamic status changes dramatically. Sudden blood
loss, clamping of the great vessels and reperfusion syn-
drome may cause hemodynamic instability. Moreover, the

clinical features of cirrhotic patients include high cardiac
output (CO), low systolic vascular resistance (SVR) and
tachycardia [1]. Thus, perioperative management becomes
extraordinarily challenging for anesthesiologists. Standard
intraoperative monitoring includes CO monitoring, which
allows the anesthesiologist to make prompt and accurate
decisions when needed. The gold standard of CO meas-
urement during liver transplantation is the thermodilution
technique using a pulmonary artery catheter (PAC) [2].
However, complications have been reported regarding the
placement of the PAC, such as pneumothorax, air em-
bolus, arrhythmia, right bundle branch block, catheter
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knotting, thrombosis [3], right ventricular rupture [4] or
pulmonary artery rupture [5]. Whether there is an add-
itional benefit to decision making provided by a PAC over
standard care in elderly, high-risk surgical patients requir-
ing intensive care [6–9] is questionable. That said, the im-
portance of intraoperative CO monitoring has led to the
development of non-invasive or less-invasive cardiac out-
put monitors, which appear promising as replacements
for the thermodilution technique in the intensive care
unit; however, none of them can provide adequate preci-
sion and accuracy during LDLT [10–12].
Electrical velocimetry (EV), a type of non-invasive car-

diac output monitoring based on thoracic electrical im-
pedance, during cardiac ejection only uses four standard
electrocardiographic electrodes to measure CO. Two
electrodes are placed at the base of the neck on the left
side and the other two on the left inferior part of the
thorax at the level of the xiphoid process. EV is mea-
sured based on the changes in thoracic electrical imped-
ance as the ohmic equivalent of the mean aortic blood
flow acceleration. The stroke volume (SV (mL)) and CO
(L/min) can be derived by the following equations:

SV ¼ VEPT � v� LVET

CO ¼ SV �HR=1000

In these equations, VEPT (mL) is the volume of elec-
trically participating tissue calculated from the body
mass and body height, ν (/s) is mean aortic blood flow
velocity during left ventricular ejection, LVET (s) is the
left ventricular ejection time and HR (beat/min) is the
heart rate. The Aesculon™ bioimpedance electrical car-
diometry monitor (Osypka Medical GmbH, Berlin,
Germany) is based on the EV formula.
Studies have been conducted to assess the accuracy of

CO measurement using EV compared to thermodilution,
Fick equation and transthoracic doppler echocardiog-
raphy [13–16]. In post-cardiac surgical patients, the ac-
curacy and interchangeability of electrical velocimetry
with the thermodilution method has been demonstrated
[17–20]. Rajput RS et al. applied the EV device during
cardiac surgery and showed that the percentage error
ranged from 22 to 32% [21].
However, limited data are available to evaluate the ac-

curacy and precision of EV during LDLT. The aim of
this study is to assess whether non-invasive EV can re-
place the continuous thermodilution technique (by PAC)
during LDLT.

Materials and methods
This study was a prospective observational study. The
study was approved by the Institutional Review Board of
Chang Gung Medical Foundation in Taiwan (registration
number: 201600264B0). Informed consent forms were

obtained from all the participants of the study.
Twenty-three patients undergoing LDLT in Chang-Gung
Memorial Hospital between July 2016 and March 2017
were enrolled in this study. The exclusion criteria were
preoperative atrial fibrillation, significant valvular path-
ology, intracardiac shunt, severe pulmonary hypertension
and refusal to provide consent.
General anesthesia was started with propofol, 1 to

2 mg/kg; fentanyl, 1 to 2 mg/kg; and cisatracurium,
0.2 mg/kg or rocuronium 1.2 mg/kg. For the cardiac
output measurement, the PAC was placed through the
right internal jugular vein and a triple lumen central
venous catheter was inserted through the left internal
jugular vein. The tip position of the PAC was confirmed
by the waveforms of pulmonary artery pressure. The
PAC was connected to a Vigilance II Monitor (Edwards
Lifesciences, USA). The continuous thermodilution ma-
chine measures CO every 30 s. CO measured by EV was
obtained by the Aesculon™ monitor. After the PAC was
inserted, four surface electrodes were applied to the pa-
tient according to the Aesculon™ protocol. As the triple
lumen catheter was fixed on the left side of neck, two
electrodes were applied on the left side of the cheek and
neck. The other two electrodes were applied on the
lower thorax. Only signals with adequate data quality
were included in the analysis.
After the sensors were attached to the skin, the data

were checked to ensure proper functioning of the sen-
sors. The clock in the operation room, on the Aesculon™
and on the continuous thermodilution machine were
synchronized. COEv and COPAC were documented at
nine time points: (1) immediately after PAC placement
and calibration, T1; (2) 60–90 min after skin incision,
T2; (3) 120–150 min after skin incision, T3; (4) immedi-
ately after removing the liver, T4; (5) 15 min after re-
moving the liver, T5; (6) 30 min after removing the liver,
T6; (7) immediately after releasing the inferior vena cava
clamp, T7; (8) 15 min after releasing the inferior vena
cava clamp, T8; (9) 30 min after releasing the inferior
vena cava clamp, T9. The data were classified into three
phases: dissection phase (T1-T3), anhepatic phase
(T4-T6), and reperfusion phase (T7-T9).
During the LDLT, the partial clamp on the inferior

vena cava (piggyback technique) was used in our hos-
pital. Piggyback technique was proved to be a safer ap-
proach to venous outflow tract reconstruction from the
hemodynamic point of view [22].

Statistical analysis
Statistical analysis was performed using SPSS 22.0 (SPSS
Inc., Chicago, IL, US) and R version 3.0.4 (Vienna,
Austria). The correlation coefficient and Bland-Altman
analysis were used to assess the agreement between two
methods [23]. A correlation coefficient between 0.9 and

Wang et al. BMC Anesthesiology  (2018) 18:138 Page 2 of 8



1.0 indicates a strong correlation; a correlation coeffi-
cient < 0.5 indicates a weak correlation. Bias, limitation
of agreement and percentage error were calculated. The
percentage error (1.96* standard deviation/average of
COPAC and COEv) was calculated according to Critchley
and Critchley [24]. The clinically acceptable percentage
error is less than 30%. The trending ability was assessed
using a four-quadrant plot [25]. The central exclusion
zone of the four-quadrant plot was ±1.0 L/min for small
changes in CO [26]. The concordance rate was defined
as the percentage of the total number of plots in the first
and third quadrants of the four-quadrant plot. The con-
cordance rate was considered good and clinically accept-
able if the rate exceeded 92%. Pearson’s correlation was
also performed to assess the association between the
two methods. Statistical significance was set at p < 0.05.

Results
Twenty-five patients who underwent planned LDLT be-
tween July 2016 and March 2017 were initially enrolled
in this study. However, two patients were subsequently
excluded, leaving data from 23 patients for analysis. One
patient was excluded because of a poor electrical signal,
so the CO could not be calculated by the EV machine.
The operation was canceled for the other patient due to
high pulmonary arterial pressure. The baseline demo-
graphic data are shown in Table 1.

A total of 207 paired data sets were recorded. CO data
were in the range of 2.8–12.7 L/min measured by PAC
and 3.4–14.9 L/min derived from the EV machine, as re-
vealed in Table 2. The highest intragroup correction co-
efficient was 0.646 at the time point immediately after
removing the inferior vena cava partial clamp. The over-
all mean COPAC was 7.1 ± 2.2 L/min and the mean COEv

was 8.4 ± 2.2 L/min. The average COEv was slightly
higher than the average COPAC. The correction coeffi-
cient between COPAC and COEv was 0.415 with p < 0.01.
The correction coefficients were 0.553 in the dissection
phase, 0.276 in the anhepatic phase and 0.376 in the re-
perfusion phase (Table 3).
The Bland-Altman analysis with a mean bias between

COPAC and COEv was − 1.26 L/min and the 95% limita-
tion agreement was − 5.9 to 3.4 L/min (Fig. 1). The over-
all percentage error was 60%, which failed to meet the
criterion of interchangeability (< 30%). Figure 2 shows
the Bland-Altman plot in three phases. The percentage
errors were 53% in the dissection phase, 65.7% in the
anhepatic phase and 59.1% in the reperfusion phase.
The SVR data calculated from the Vigilance II Monitor

were also collected. The overall mean of SVR was 815 ±
383 dyne*cm− 5 (mean ± SD). The mean of SVR dropped
from 863 dyne*cm− 5 to 615 dyne*cm− 5 at T8 or 15 min
after liver reperfusion. There was a negative correction
between the bias of COPAC from COEv and SVR (r = −
0.317 p < 0.01). The highest intragroup correction coeffi-
cient was − 0.67 at T6, or 30 min after removing the
liver.
Four-quadrant plots were drawn to evaluate the trend-

ing ability, as shown in Fig. 2. The central exclusion
zone was set at ±1 L/min. The COPAC changes and COEv

changes were compared. In total, 184 paired data sets
were placed on the four-quadrant plots. There were 60
sets within the central exclusion zone. After excluding
the central zone data, the concordance rate between the
two methods was 56.5%. The concordance rates were
48.3% in the dissection phase, 55.8% in the anhepatic
phase and 61.5% in the reperfusion phase.

Discussion
In our study, the continuous thermodilution method
was utilized to measure CO instead of the gold standard
using the intermittent thermodilution technique, in
which the accuracy can be affected by the timing of the
injection within the respiratory cycle, the change of pul-
monary artery blood temperature, the injectate, the
speed of the injection and the placement of the catheter
[13]. Under hemodynamically stable condition, a good
correction, accuracy and precision between continuous
and intermittent cardiac output measurement during
has been shown in the literature [27–29]. The limitation
agreement between the continuous thermodilution

Table 1 Patient characteristics of liver transplantation recipients

Characteristic Descriptive statistics

Age (years) 56 ± 7(41–68)

Gender

Male 18

Female 5

Body mass index(kg/m2) 24.5 ± 3.0(20.4–31.9)

Ascites amount (ml) 2265 ± 3744(0–12,400)

Indication for LDLT

HBV related HCC 11

HCV related Cirrhosis 4

HBV with acute liver failure 3

Alcoholic related cirrhosis 2

Drug 1

HBV related cirrhosis 2

MELD SCORE 18 ± 11(6–41)

< 10 5

10–19 10

20–29 4

> =30 4

Data are described as mean ± standard deviation (range) or number
LDLT Living donor liver transplantation, HBV Hepatitis B virus, HCC
hepatocellular carcinoma, HCV Hepatitis C virus, MELD Model for End-Stage
liver disease
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method and the intermittent thermodilution technique
is clinically acceptable. Bottiger BW et al. [30] has dem-
onstrated significant correlation between intermittent
and continuous CO measurements (r = 0.87, p < 0.0001),
accompanied with a bias of 0.240 L/min during orthoto-
pic liver transplantation. They also revealed that the
changes in the pulmonary artery blood temperature
would influence the CO measurements more by inter-
mittent thermodilution than by continuous thermodilu-
tion during reperfusion. The continuous CO monitor
was therefore used to determine the reliability of
EV-based CO measurements. We found that COEv

showed limited accuracy when compared to continuous
thermodilution CO assessment.
This study demonstrates that the Aesculon™ system

using the EV formula is not interchangeable with the
established automatic thermodilution method using a
PAC in patients undergoing LDLT. The percentage error
was 60% and was not clinically acceptable. In our study,
COEv was generally higher than COPAC. The mean bias
between COPAC and COEv was − 1.26 L/min. Several fac-
tors could have contributed to such poor interchangeabil-
ity between the Aesculon™ system and thermodilution
using a PAC during LDLT. First, in the equivalent of COEv,
the VEPT (mL) is related to the patient’s body weight [31].
VEPT could be miscalculated in the presence of a large

volume of ascites. As ascites is one of the clinical
manifestations in patients with liver cirrhosis requir-
ing LDLT, the presence of ascites may cause an over-
estimation of the patient’s body weight, leading to an
overestimation of CO by the Aesculon™ monitor. In
our study, the amount of ascites varied greatly among
the patients, ranging from 0 ml to 12,000 ml. In the
extreme situation, the ascites could make up to 20%
of the body weight overestimation, which in turn may
give a greater value COEv than COPAC. Secondly, the
massive ascites could displace the upward the dia-
phragm upwards, causing geometric changes that
could alter the conductivity of the thorax and thus
affect the accuracy of the EV method. Thirdly, surgi-
cal manipulation of the upper abdomen could have
an impact on the COEv. Surgical interventions to the
upper abdomen could cause a shift in the bioimpe-
dance cardiac output index readings by > 1 L/min/m2,
and the direction of the shift was unpredictable [32].
The use of surgical retractor in addition to abdominal
wall compression may additionally contribute to a
change in conductivity. A poor correlation between
those two methods was noted in this study. The cor-
rection coefficient between COPAC and COEv was
0.415 with p < 0.01. The subgroup analysis showed
that correlation coefficients were 0.553 in the

Table 2 Correction coefficient, bias and 95% limitation of agreement of all measurements and time point

Time Intragroup correction
coefficient

Bias (L/MIN) Limits of agreement
(L/MIN)

COPAC

(L/MIN)
COEv (L/MIN) SVR by PAC

dyne*cm−5

T1 ***0.592 −0.78 − 4.38 to 2.82 6.70 ± 2.02 7.49 ± 2.05 908 ± 460

T2 ***0.524 −0.65 − 4.92 to 3.62 6.88 ± 2.18 7.54 ± 2.28 897 ± 553

T3 ***0.555 −1.03 −4.87 to 2.81 7.00 ± 2.24 8.03 ± 1.85 862 ± 410

T4 ***0.466 −1.20 − 5.75 to 3.35 6.99 ± 2.34 8.19 ± 2.13 794 ± 662

T5 0.334 −1.59 −6.67 to 3.49 6.83 ± 2.14 8.41 ± 2.37 829 ± 344

T6 0.012 −2.29 −7.74 to 3.16 6.61 ± 2.14 8.90 ± 1.80 896 ± 750

T7 ***0.646 −2.43 −6.25 to 1.39 6.81 ± 2.29 9.23 ± 2.33 863 ± 364

T8 0.276 −0.62 −5.27 to 4.03 8.06 ± 1.96 8.68 ± 1.99 616 ± 230

T9 0.304 −0.72 −6.35 to 4.91 8.40 ± 1.99 9.13 ± 2.77 665 ± 233

Abbreviations: COPAC cardiac output derived from continuous transpulmonary thermodilution method, COEv cardiac output derived from Electrical
velocimetry method
Data are shown as mean ± standard deviation
*** the P-value < 0.05

Table 3 Correction coefficient, bias and percentage error between COPAC and COEv measurement in each surgical phase

Phase correction coefficient Bias (L/MIN) Limits of agreement(L/MIN) Percentage error (%)

Total ***0.415 −1.26 ± 2.39 − 5.94 to 3.42 60.0%

Dissection ***0.553 −0.82 ± 1.97 − 4.68 to 3.04 53.1%

Anhepatic ***0.276 −1.69 ± 2.57 −6.73 to 3.34 65.7%

Reperfusion ***0.376 −1.26 ± 2.53 − 6.22 to 3.70 59.1%

Data are shown as mean ± standard deviation
*** the P-value < 0.05
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dissection phase, 0.276 in the anhepatic phase and
0.376 in the reperfusion phase. The relatively stable
hemodynamics during dissection may be the reason
why this phase was shown to have a better correlation coef-
ficient. Manipulation of the great vessels during the anhepa-
tic phase could cause a decrease in the preload, and renal
vein congestion may cause hemodynamic instability [33].
Reperfusion syndrome may also lead to low blood pressure
during the reperfusion phase [34, 35]. The reason why
hemodynamic stability affected the correction coefficient
was due to the measurement interval of those two tech-
niques. The COEv measurement was based on a change in
conductivity and measured CO in seconds. However, the
continuous COPAC measurement needs several minutes
[36]. Even though the readings on the COPAC monitor
refreshed CO every 30 s, the CO displayed was the average
of CO over the preceding 3–6 min [30]. When the CO
changes, the COPAC machine needed more time to deter-
mine the real CO. With hemodynamic disturbances, COEv

could be assumed to be closer to real-time CO than COPAC,

which could be minutes behind. The best intragroup correc-
tion coefficient was achieved immediately after the inferior
vena cava partial clamp was released, possibly as a result of
the relatively hemodynamic stability and minimal interrup-
tion of the electrical signal during vessel anastomosis. It
takes minutes to impact the hemodynamic after off-clamp.
Due to the relatively slow response of the continuous ther-
modilution measurement, the correction coefficients were
much worse during hemodynamic instability.
The concordance rate was 56.5% when the central ex-

clusion zone was ±1 L/min, much lower than the clinic-
ally acceptable concordance rate of 92%. This may also
be attributed by the lag in CO measurement using the
continuous thermodilution technique.
This study has several limitations. First, the EV used

four electrodes to detect the signal and calculate the
CO. However, electro-coagulation and cutting could
interfere with these signals during surgery. With every
interruption, the EV machine required approximately at
least 30 s to reacquire the conduction signal. The

Fig. 1 Bland-Altman plot for COEv and COPAC. Bias and limits of agreement (±1.96SD) are shown in the plot. Abbreviations: COPAC cardiac output
derived from continuous transpulmonary thermodilution method; COEv cardiac output derived from Electrical velocimetry method; SD
standard deviation

Wang et al. BMC Anesthesiology  (2018) 18:138 Page 5 of 8



artefacts overlaying the recorded signal may in fact cause
an over- or underestimation of CO, in particularly dur-
ing the dissection phase. In extreme situations, the EV
machine could only acquire one data point per hour due
to interference from electro-coagulation. EV interference
could also be due to mechanical compression of the
thoracic electrodes by the surgeon. Second, the small
sample size warrants further studies with a larger popu-
lation size. Third, the trending ability of the EV monitor
was only partially surveyed. During LDLT, fluid chal-
lenge, inotropic agent usage and great vessel clamping
could cause hemodynamic changes.

Conclusions
In conclusion, the Aesculon™ monitor exhibited limited
accuracy, precision and trending ability when compared
to continuous thermodilution CO monitoring during
LDLT. The Aesculon™ system is not yet interchangeable

with continuous thermodilution cardiac output monitor-
ing during LDLT.

Abbreviations
CO: Cardiac output; COEv: Cardiac output measured by electrical velocimetry;
COPAC: Cardiac output measured by the pulmonary thermodilution;
PAC: Pulmonary artery catheter; LDLT: Living donor liver transplantation;
EV: Electrical velocimetry; RBCs: Red blood cells; SV: Stroke volume;
VEPT: Volume of electrically participating tissue; ν: Mean aortic blood flow
velocity during left ventricular ejection; LVET: Left ventricular ejection time;
HR: Heart rate; SD: Standard deviation
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