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Preferential effects of low volume versus
high volume replacement with crystalloid
fluid in a hemorrhagic shock model in pigs
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Abstract

Background: Fluid resuscitation is a core stone of hemorrhagic shock therapy, and crystalloid fluids seem to be
associated with lower mortality compared to colloids. However, as redistribution starts within minutes, it has been
suggested to replace blood loss with a minimum of a three-fold amount of crystalloids. The hypothesis was that in
comparison to high volume (HV), a lower crystalloid volume (LV) achieves a favorable coagulation profile and exerts
sufficient haemodynamics in the acute phase of resuscitation.

Methods: In 24 anaesthetized pigs, controlled arterial blood loss of 50 % of the estimated blood volume was either
(n = 12) replaced with a LV (one-fold) or a HV (three-fold) volume of a balanced, acetated crystalloid solution at
room temperature. Hemodynamic parameters, dilution effects and coagulation profile by standard coagulation tests
and thromboelastometry at baseline and after resuscitation were determined in both groups.

Results: LV resuscitation increased MAP significantly less compared to the HV, 61 ± 7 vs. 82 ± 14 mmHg (p < 0.001)
respectively, with no difference between lactate and base excess between groups. Haematocrit after fluid replacement
was 0.20 vs. 0.16 (LV vs. HV, p < 0.001), suggesting a grade of blood dilution of 32 vs. 42 % (p < 0.001) compared to
baseline values. Compared to LV, HV resulted in decreased core temperature (37.5 ± 0.2 vs. 36.0 ± 0.6 °C, p < 0.001),
lower platelet count (318 ± 77 vs. 231 ± 53 K/μL, p < 0.01) and lower plasma fibrinogen levels (205 ± 19 vs. 168 ±
24 mg/dL, p < 0.001). Thromboelastometric measurements showed a significant impairment on viscoelastic clot
properties following HV group. While prothrombin time index decreased significantly more in the HV group, activated
partial thromboplastin time did not differ between both groups. HV did not result in hyperchloraemic acidosis.

Discussion: Coagulation parameters represented by plasma fibrinogen and ROTEM parameters were also less impaired
with LV. With regrad to hematocrit, 60 % of LV remained intracascular , while in HV only 30 % remained in circulation
within the first hour of administration. In the acute setting of 50 % controlled blood loss, a one fold LV crystalloid
replacement strategy is sufficient to adequately raise blood pressure up to a mean arterial pressure >50 mm Hg. The
concept of damage control resuscitation (DCR) with permissive hypotension may be better met by using LV as
compared to a three fold HV resuscitation strategy.

Conclusion: High volume administration of an acetated balanced crystalloid does not lead to hyperchloraemic
acidosis, but may negatively influence clinical parameters, such as higher blood pressure, lower body temperature and
impaired coagulation parameters, which could potentially increase bleeding after trauma. Replacement of acute blood
loss with just an equal amount of an acetated balanced crystalloid appears to be the preferential treatment strategy in
the acute phase after controlled bleeding.
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Background
In order to ensure tissue oxygenation it seems to be es-
sential to restore the circulating blood volume. Thus,
fluid resuscitation is mandatory in hemorrhagic shock
therapy to maintain adequate blood flow and blood pres-
sure [1]. Nevertheless, it has been questioned whether
normalization of blood pressure in bleeding patients is
harmful [2]. Both crystalloids and colloids are widely
used for initial fluid therapy. However the use of artifi-
cial colloids for volume replacement is still under debate
[3]. A metaanalysis found that crystalloids are associated
with lower mortality in trauma patients compared to
colloids [4].
Current European guidelines on the management of

severe perioperative bleeding [5] and bleeding manage-
ment in trauma [6] recommend replacement of extracel-
lular fluid losses with isotonic crystalloids in a timely
and protocol-based manner. In the setting of acute
bleeding bolus infusion up to two liters of crystalloids in
an adult (70 kg) patient is recommended as initial fluid
therapy [7, 8].
When using large quantities of crystalloid solutions

such as normal saline, development of dilutional hyper-
chloraemic acidosis has been described [9]. It is well
known that acidosis impairs coagulation, particularly
platelet function and thrombin generation [10, 11].
Therefore, it has been speculated that balanced solutions
may potentially avoid or minimize these effects, and
current European guidelines on the management of se-
vere perioperative bleeding recommend the use of
balanced solutions for crystalloids [5]. In balanced crys-
talloids, metabolic anions (mainly acetate or lactate) are
used instead of chloride to establish neutrality of elec-
trons and isotonicity in vitro. From a physiological point
of view, the intravascular volume effect of crystalloids
can be less than 20 % and redistribution starts within
minutes [12]. Therefore it has been suggested to replace
blood loss with at least a three-fold amount of crystal-
loids or more [13–15].
We aimed to investigate fluid replacement with a low

(one-fold, LV) or a high (three-fold, HV) volume of a
modern, balanced, acetated crystalloid solution in a pig
model of controlled arterial blood loss of 50 % of the es-
timated blood volume. The effects on basic haemo-
dynamic monitoring, acid base status, electrolyte status,
standard coagulation tests and thromboelastometric pa-
rameters were investigated.
We decided to use this model of controlled haem-

orrhage with approximately 50 % blood loss within
30 min as the average transport time to hospital in
traumatological emergency systems in middle Europe
is comparable [16]. Our haemorrhagic shock model is
comparable to other shock models in pigs, where
shed blood volume amounted to 40–50 %, or shock

was achieved by 30 ml/kg withdrawl of blood, and
MAP below 35 mmHg [17–19].
We hypothesized that LV fluid replacement would re-

sult in suitable blood pressure improvement (mean ar-
terial pressure >50 mmHg), similar acid base balance
and lactate production, but less impairment of coagula-
tion as compared to HV fluid therapy.

Methods
Animals
The experimental protocol was approved by the Animal
Protocol Review Board of the City Government of
Vienna, Austria under protocol number MA58-005750/
2012/9, and our centre is certified by the same Review
Board for performing animal studies. All experiments
were performed under conditions described in the Guide
for the Care and Use of Laboratory Animals, as defined
by the National Institutes of Health.
Twentyfour healthy male pigs (Landrace pigs from a

government-approved farmer in Münichsthal, Austria;
age range 12–16 weeks) were used for the investigation.
The blood volume of the actual pigs was estimated with
70 ml/kg.
Two days prior to the study, the animals were housed

in pairs and on straw, with unrestricted access to food
(farmers’ domestically produced diet) and water.
Temperature was maintained between 19 and 23 °C,
relative humidity was 55 ± 10 %, and a 12/12 h light/dark
cycle was maintained. Animals were fasted overnight be-
fore surgical procedures, with unrestricted access to
water.

Anaesthesia, surgical preparations and cardiorespiratory
monitoring
Anaesthesia was induced intramuscularly with a combin-
ation of butorphanol (0.17 mg/kg; Alvetra and Werfft
AG, Vienna, Austria), medetomidine (0.03 mg/kg; Euro-
vet Animal Health, Bladel, Netherlands) and midazolam
(0.5 mg/kg; Nycomed Austria GmbH, Linz, Austria)
followed by intravenous (ear vein) ketamine (7 mg/kg;
Pfizer, Vienna, Austria). Intubation was performed with
a 6.5 mm tracheal tube, and volume controlled ventila-
tion was set to maintain end-tidal CO2 between 4.5 and
5.5 kPa. Anaesthesia was maintained intravenously with
midazolam (0.8 mg/kg/h), sufentanil (8 μg/kg/h; Janssen,
Vienna, Austria) and rocuronium (5 mg/kg/h; Organon,
Oss, Netherlands). Catheters were placed by direct prep-
aration and incision of the left external jugular vein and
left carotid artery for standard fluid therapy, invasive
blood pressure monitoring and blood withdrawal (ac-
cording to the standardized pig anaesthesia protocol).
The arterial catheter was constantly flushed at a rate of
4 ml/h using heparinised saline (8 U/mL heparine) to pre-
vent clotting. A 14-Fr catheter was inserted suprapubically
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into the bladder. Mean arterial pressure, heart rate, oxygen
saturation and ventilation parameters were monitored
continuously, while arterial blood gas analysis and lactate
were measured at blood sampling time-points. Experi-
ments were performed at the in-house operation theatre
in the morning. Safety of interventions was assessed by
haemodynamic monitoring (blood pressure, heart rate)
throughout the whole experiment.

Experimental protocol
A schematic illustration of the experimental protocol is
depicted in Fig. 1. Pigs selected for instrumentation by
the animal care keepers of the animal research labora-
tory were randomly assigned to the low or high volume
group according to a written study plan.
After induction of anaesthesia and instrumentation,

the first study measurements (baseline) were carried out.
A substantial bleeding situation was then simulated by
withdrawing 35 ml/kg blood through an arterial catheter
within a period of 30 min (withdrawal rate approxi-
mately 30–50 ml/min). ELO-MEL® (Fresenius Kabi,
Wien, Austria) a modern, balanced and acetated crystal-
loid, which contains sodium (140.0 mmol/L), potassium
(5.0 mmol/L), calcium (2.5 mmol/L), magnesium
(1.5 mmol/L), chloride (108.0 mmol/L) and acetate
(45.0 mmol/L) has been used for fluid replacement ther-
apy. The osmolality is reported to be 302 mosmol/L, and

the pH value of the solution ranges between 6.0 and 7.5.
Directly after completion of measurement after blood
loss, fluid administration of either 1000 ml (LV) or
3000 ml (HV) of a balanced crystalloid solution
(ELO-MEL isoton, Fresenius Kabi, Graz, Austria) was
administered within a time of approximately 40 min.
Ten minutes after cessation of fluid infusion measure-
ments were completed.

Study measurements, blood sampling and analytical
methods
Baseline arterial blood samples were measured at the be-
ginning of the experiment. For blood gas analysis, blood
was collected in a 1 ml heparinized syringe and analysis
measurement of electrolytes, lactate and glucose was
carried out on an ABL 870 Flex (Radiometer,
Copenhagen, Denmark). For measurement of haemato-
crit (Hct)), white blood cell count (WBC) and platelet
count (Plt) blood was collected in 3-mL tri-potassium
ethylenediaminetetraacetic acid (K3EDTA) tubes (Vacu-
ette), with the addition of 1.6 mg/mL EDTA. Cell counts
were measured with a CELLDYN 3700 Instrument
(Abbott, Vienna, Austria), using appropriate animal set-
tings. The ratio of Hct after fluid replacement to Hct at
baseline was used to estimate a percentage of dilution.
For the coagulation analyses, blood was initially col-
lected in 3.5 mL tubes containing 0.35 mL buffered

Fig. 1 Schematic description of the experimental procedure, time-points and laboratory investigation of the used pig model with 50 % controlled
haemorrhage followed by two different fluid replacement regimen using an acetated, balanced crystalloid either with a 1-fold, low (LV, n = 12) or
a 3-fold, high (HV, n = 12) volume
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3.2 % trisodium citrate (Vacuette; Greiner Bio-One, Linz,
Austria), giving a volume ratio for citrate to whole blood
of 1:9. Aliquots of citrated blood were centrifuged imme-
diately at 2800 g for 15 min to obtain plasma. Fibrinogen
(Clauss method; Multifibren U, Siemens, Marburg,
Germany) and activated partial thromboplastin time
(aPTT) (Actin FS; Siemens, Marburg, Germany) were ana-
lysed with a KC-10 steel ball coagulometer (Amelung
GmbH, Lemco, Germany). Prothrombin time index (PTI)
(Thromborel S; Siemens, Marburg, Germany) was run on
a Sysmex CA 1500 device (Siemens, Marburg, Germany).

Thromboelastometric measurements
Thromboelastometric measurements were carried out at
baseline and after fluid replacement only. The ROTEM
device was checked for correct functioning according to
the manufacturer’s recommendation by using control
plasma (ROTROL N). ROTEM analyses were then per-
formed in two ways: 1) standard EXTEM and FIBTEM
assays immediately after citrated whole blood was
drawn; and 2) EXTEM assay in platelet-free plasma
(PFP), obtained by centrifuging (2800 g for 15 min) and
filtering (0.22 μm) the citrated blood samples.
All assays were initiated by the addition of 20 μL

CaCl2, 200 mmol/L and 20 μL Ex-Tem® reagent (Tem
International GmbH, Munich, Germany), providing ex-
trinsic activation through tissue factor. In the FIBTEM
assay, additional cytochalasin D inhibits platelets’ contri-
bution to clot strength by preventing cytoskeletal reorga-
nisation. Because the commercially available FIBTEM
assay does not sufficiently inhibit platelets in porcine
blood samples, we also performed the EXTEM in PFP to
estimate fibrin polymerization in plasma without plate-
lets [20]. The following ROTEM variables were analysed:
clotting time (CT [sec]; time from the start of measure-
ment until formation of a clot of 2 mm in amplitude);
clot formation time (CFT [sec]; time from the end of CT
until a clot firmness of 20 mm was achieved); and max-
imum clot firmness (MCF [mm]; maximum strength of
the clot, determined by the interaction of fibrin, acti-
vated platelets and factor XIII). In FIBTEM and PFP
EXTEM, only MCF was analysed.

Statistical analysis
The number of animals (n = 12 per group) included in
the study was based on pilot experiments and a consecu-
tive power analysis, considering a drop out of 20 % and
assuming that HV fluid replacement (as compared to
LV) may reduce plasma fibrinogen (the most sensible
coagulation factor to decline after haemorrhage and di-
lution) [21] by 50 ± 25 mg/dL and providing at a power
of 90 % and a two-sided alpha of 5 %. Normal distribu-
tion of data was evaluated using the Kolmogorov-
Smirnov test. Normally distributed data were expressed

as mean ± standard deviation, and data not following the
normal distribution were expressed as median and inter-
quartile range. A repeated measures analysis of variance
(ANOVA) was used to detect differences between time-
points (baseline, haemorrhage, dilution) and a Tukey’s
post hoc correction for multiple comparisons was ap-
plied. The Student’s t-test (normal distribution) or the
Mann–Whitney test (non-normal distribution) was used
to assess differences between the two groups at each
time-point. A two-tailed P-value <0.05 was considered
statistically significant. All statistical calculations were
performed using commercially available statistical soft-
ware (GraphPad Prism 5, GraphPad Software, La Jolla,
CA).

Results
All animals were treated according to the experimental
protocol (Fig. 1). The mean body weight was 33.9 ±
3.4 kg (range 27.5–40.5 kg), mean blood loss was 1187 ±
120 ml and the time between blood sampling at baseline
and after haemorrhage was 45 ± 8 min in LV and 41 ±
7 min in HV-group (p = 0.23) with no significant differ-
ences between the two treatment groups. Including infu-
sion of carrier solution, the actual amount of fluid
replacement between end of haemorrhage and end of di-
lution was 37.9 ± 4.4 ml/kg in the LV-group (=1.08 fold
the amount of blood loss) and 99.7 ± 11.3 ml/kg (p <
0.0001) in the HV-group (= 2.85 fold the amount of
blood loss) The time between blood sampling after
haemorrhage and after dilution was 50 ± 19 min in LV
and 57 ± 11 min in HV-group (p = 0.33).
After haemorrhage Hct was already significantly lower

compared to baseline in both groups (Table 1). Haemor-
rhage alone did not decrease platelet count and WBC in
both groups. Following fluid replacement, Hct, Plt and
WBC significantly decreased as compared to the values
after haemorrhage. Furthermore HV resulted in signifi-
cant lower values of Hct and Plt and WBC as compared
to LV (Table 1).
Despite equal blood loss in both groups, Hct ratio be-

tween haemorrhage and dilution show a grade of blood
dilution of 32 % in LV vs. 42 % in HV (p < 0.001). Given
the actual amount of fluid administered (as compared to
shed blood volume) this indicated that 59.3 % of LV fluid
was still present, while only 29.5 % of HV therapy
remained intravascularly at the time point of measure-
ment. After acute blood loos of approximately 50 %
blood volume, mean heart rate did not show tachycardia
(90 ± 17 per min) in both groups, but frequent changes
in heart rhythm and QRS deformities were observed.
MAP at that time was found to be very low in both
groups with no significant differences (Table 2). LV and
HV crystalloid replacement stabilised MAP to 61 ±
7 mmHg in the LV group, while HV increased the blood
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pressure to higher levels of 82 ± 14 mmHg (p = 0.0002).
Although heart rate did not significantly change between
time points of measurement, it was significantly higher
in the HV group, as compared to LV (p = 0.0046).
Baseline temperature did not decrease during haem-

orrhage, but through fluid replacement therapy only, as
we used fluids warmed at 22 °C. HV therapy resulted in
1.5 °C decline as compared to 0.5 °C in the LV group
(p < 0.0001, Table 2). As compared to baseline, haemor-
rhage resulted in significant increase in lactate and de-
creased pH and BE as well as bicarbonate (Table 2). As
compared to baseline, PTI did not decrease with haem-
orrhage but with dilution in both groups, and exhibited
significant lower levels in the HV-group as compared
to LV (p = 0.0031, Table 1). aPTT did not differ between
both groups after haemorrhage and dilution.

Plasma fibrinogen decreased significantly in both groups
from baseline to haemorrhage (386 ± 59 mg/dL to 268 ±
38 mg/dL (LV) and 350 ± 67 mg/dL to 255 ± 43 mg/dL
(HV)) with no inter-group difference (p = 0.45). After fluid
replacement it further decreased to 205 ± 19 mg/dL in the
LV group, and to 168 ± 24 mg/dL in the HV group (p =
0.0004).
ROTEM results in whole blood, using the EXTEM

assay (CT, CFT, MCF) as well as the FIBTEM assay
(MCF) are presented in Fig. 2a-d. In the LV group,
haemorrhage and dilution resulted in a shortening of
CT as compared to baseline, whereas it did not change

Table 1 Blood cell count and standard coagulation tests

Baseline Haemorrhage Dilution ANOVA

Hct (%)

LV 29.2 ± 2.1 25.6 ± 1.4 19.9 ± 1.5 p < 0.0001

HV 28.3 ± 1.6 24.7 ± 1.0 16.3 ± 1.7 p < 0.0001

p = 0.27 p = 0.08 p < 0.0001

Plt (K/μL)

LV 380 ± 86 399 ± 75 318 ± 67 p < 0.0001

HV 361 ± 62 378 ± 71 231 ± 54 p < 0.0001

p = 0.53 p = 0.47 p = 0.002

WBC (K/μL)

LV 15.6 ± 3.5 16.2 ± 5.1 19.0 ± 5.5 p = 0.021

HV 14.4 ± 3.7 14.5 ± 3.2 12.0 ± 3.7 p = 0.017

p = 0.43 p = 0.36 p = 0.0014

PTI (%)

LV 113 ± 9 110 ± 8 102 ± 7 p = 0.0084

HV 110 ± 6 106 ± 7 92 ± 8 p < 0.0001

p = 0.45 p = 0.23 p = 0.0031

aPTT (sec)

LV 13.5 ± 0.8 14.0 ± 0.6 14.4 ± 0.6 p = 0.012

HV 13.5 ± 0.7 13.8 ± 0.8 14.3 ± 1.1 p = 0.086

p = 0.85 p = 0.45 p = 0.84

Fbg (mg/dL)

LV 386 ± 59 268 ± 38 205 ± 19 p < 0.0001

HV 350 ± 67 255 ± 43 168 ± 24 p < 0.0001

p = 0.17 p = 0.45 p = 0.0004

Measurements at baseline, after 50 % haemorrhage and after fluid replacement
(dilution) with an acetated, balanced crystalloid administering either with a low
(LV, n = 12) or a high (HV, n = 12) volume strategy. P-values refer to differences
between the two groups at each time-point. P-values of ANOVA refer to
differences between time-points (baseline, haemorrhage, dilution)
Hct haematocrit, LV low volume resuscitation, HV high volume resuscitation, Plt
platelet count, WBC white blood cells, PTI prothrombin time index, aPTT
activated partial thromboplastin time, Fbg fibrinogen

Table 2 Haemodynamic parameters, body temperature, and
blood gas analysis

Baseline Haemorrhage Dilution ANOVA

MAP (mmHg)

LV 107 ± 11 32 ± 10 61 ± 7 p < 0.0001

HV 117 ± 15 29 ± 7 82 ± 14 p < 0.0001

p = 0.07 p = 0.44 p = 0.0002

HR (min−1)

LV 91 ± 21 86 ± 11 76 ± 17 p = 0.064

HV 84 ± 13 94 ± 21 90 ± 11 p = 0.069

p = 0.32 p = 0.20 p = 0.0046

Temperature (°C)

LV 37.9 ± 0.5 38.0 ± 0.6 37.5 ± 0.7 p < 0.0001

HV 37.4 ± 0.6 37.5 ± 0.6 36.0 ± 0.6 p < 0.0001

p = 0.046 p = 0.044 p < 0.0001

Lactate (mg/dL)

LV 8.5 ± 1.9 23.2 ± 8.0 17.3 ± 4.4 p < 0.0001

HV 8.5 ± 2.7 27.0 ± 10.3 19.7 ± 3.8 p < 0.0001

p = 1.0 p = 0.32 p = 0.16

pH

LV 7.51 ± 0.03 7.48 ± 0.04 7.49 ± 0.04 p = 0.012

HV 7.48 ± 0.03 7.45 ± 0.04 7.50 ± 0.07 p = 0.041

p = 0.03 p = 0.12 p = 0.67

BE (mmol/L)

LV 5.0 ± 1.8 1.6 ± 1.7 4.1 ± 1.7 p < 0.0001

HV 4.5 ± 1.3 −0.7 ± 1.7 4.4 ± 1.0 p < 0.0001

p = 0.53 p = 0.004 p = 0.56

HCO3
− (mmol/L)

LV 29.2 ± 1.7 26.1 ± 1.6 28.2 ± 1.5 p < 0.0001

HV 28.6 ± 1.3 24.1 ± 1.4 28.6 ± 0.9 p < 0.0001

p = 0.40 p = 0.004 p = 0.43

Measurements at baseline, after 50 % haemorrhage and after fluid replacement
(dilution) with an acetated, balanced crystalloid administering either with a low
(LV, n = 12) or a high (HV, n = 12) volume strategy. P-values refer to differences
between the two groups at each time-point. P-values of ANOVA refer to
differences between time-points (baseline, haemorrhage, dilution)
MAP mean arterial pressure, LV low volume resuscitation, HV high volume
resuscitation, HR heart rate, BE base excess
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in the HV group. CFT did not change in the LV group,
but was significantly prolonged in the HV-group. MCF
of the EXTEM as well as the FIBTEM assay was signifi-
cantly reduced in both groups as compared to baseline.
Thromboelastometric clot strength of extrinsic activated
platelet free plasma decreased in response to haemodilu-
tion from baseline MCF (24 ± 2 mm in LV, versus 24 ± 3
in HV, p = 0.87) to (16 ± 2 versus 13 ± 2 mm, respect-
ively. Clot strength was significantly impaired in the
HV-group (p = 0.0039).
For all ROTEM parameters it was observed, that HV

significantly weakened viscoelastic coagulation proper-
ties more than did LV fluid replacement. With exception
of a significant decrease in potassium after HV-therapy
as compared to LV, no differences of electrolyte and glu-
cose levels were observed between the two groups of
fluid replacement (Table 3).

Discussion
In this preclinical in vivo study, using a specific haemo-
dilution model with controlled bleeding prior to fluid
administration, we could show that a LV regimen of the
investigated balanced crystalloid solution resulted in a
higher percentage of intravascular volume expansion of
60 % as compared to 30 % in HV within the first hour of

application with regard to haematocrit. Furthermore it
was observed that even a high volume of this balanced
crystalloid did not result in hyperchloraemic acidosis.
We could also show that in the acute setting of 50 %
controlled blood loss, a LV crystalloid replacement strat-
egy is sufficient to adequately raise blood pressure up to
a mean arterial pressure >50 mmHg .[22]. In contrast to
HV replacement strategy that results in higher blood
pressure, the concept of damage control resuscitation
(DCR) with permissive hypotension may be better met
by using LV.
In addition to the favourable effect of lower MAP in

the LV group, coagulation parameters represented by
plasma fibrinogen and ROTEM parameters are also less
impaired with LV. Nevertheless, hypoperfusion in combin-
ation with low blood pressure might cause lower tissue
oxygenation that may also reduce plasma fibrinogen levels
[23, 24]. Time of withdrawl (i.e. haemorrhage) presumably
has an impact on shock and haemostasis, but as time was
comparable in the LV and HV group (p = 0.23), there was
no substantial effect on the results of the study.
There was no significant change in heart rate, as pigs

were anaesthetised with midazolam and sufentanil, with
the latter substance to be known to blunt cardiac chron-
otropic response to hypotension.

Fig. 2 Thromboelastometric measurement of whole blood, using EXTEM (a) clotting time (CT), (b) clot formation time (CFT), and (c) maximum
clot firmness (MCF) as well as (d) FIBTEM MCF. Data presented are median, interquartile range and range. Shaded boxes represent the high volume
(HV) group; white boxes represent the low volumen (LV) group. ns not significant
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Use of crystalloid for volume replacement
Crystalloid fluids are widely used for volume resuscita-
tion. The “simplest” crystalloid, normal saline, is a solu-
tion of 0.9 % of sodium chloride, with an osmolality of
308 mosmol/L. It contains 154 mmol/L of sodium and
154 mmol/L of chloride and therefore this solution can
be considered neither physiological nor balanced. How-
ever, saline is frequently used as a plasma substitute [25].
In contrast, balanced electrolyte solutions are isotonic and
have electrolyte compositions close to that of plasma [26].
Although there are still few studies where outcome benefit
has been shown [27], there is little reason to question the
rationale for using balanced solutions [5, 28].
The crystalloid solution used in the current study offers

balanced electrolyte content with chloride of 108 mmol/L,
but using a high content of acetate, reducing the probabil-
ity of inducing hyperchloraemic acidosis. Manufacturer’s
recommendations suggest a maximum daily dose of 30–
40 ml/kg. Considering lactate as a surrogate parameter for
tissue oxygenation, it was shown that crystalloid fluid ad-
ministration was able to significantly improve lactate
clearance as compared to haemorrhage. Importantly, after
fluid replacement, neither lactate, pH, nor BE differed be-
tween both groups.

Volume effect of the balanced crystalloid
The intravascular volume expansion effect of crystalloid
fluids is low [29]. Therefore, large amounts of crystal-
loids are often necessary to provide sufficient increase in
intravascular volume. Following infusion of crystalloid
solutions, 80 % and more cross the capillary membrane
from the intravascular compartment into the interstitial
space within minutes [12]. Our results showed that after
a blood loss of 35 ml/kg (50 % of assumed blood volume
of 70 ml/kg) administration of an equal amount of crys-
talloid solution (LV-group) did cause a dilution effect of
32 % of the remaining blood, suggesting that approxi-
mately 60 % of administered crystalloid volume was still
intravascular within the first hour of administration. In
HV, the grade of blood dilution was found to be 42 % in-
dicating that only about 30 % of the actually adminis-
tered fluid volume remained intravascular at the same
time point of measurement. The latter is in accordance
to further studies showing a time dependent 20–30 %
volume effect of crystalloids [14, 15]. In the current
specific setting of massive but controlled blood loss, ad-
ministration of low volumes of crystalloid exerts a pref-
erential acute volume effect. Whether this could be
attributed to the actual need of the exsanguinating ani-
mal or patient needs to be confirmed.
Mean arterial blood pressure in the LV-group after

volume replacement was 61 ± 7 mmHg, thereby rose to
a clinically acceptable level (>50 mmHg) [22], when con-
sidering blood pressure as a commonly used global peri-
operative clinical surrogate parameter for perfusion in
bleeding patients. In contrast, HV raised MAP to 82 ±
14 mmHg, suggesting overtreatment, with regard to the
concept of DCR with deliberate permissive hypotension
[22, 30]. We are, however, aware that we did not investi-
gate an uncontrolled bleeding model, limiting interpret-
ation of these specific results with regard to DCR.
Nevertheless, as the animal was exposed to 30 min of
bleeding with severe blood loss of 50 %, we imitated
clinical reality of “uncontrolled bleeding” until surgical
supply. Fluid resuscitation, administered at room
temperature, caused body temperature to significantly
fall, with the HV strategy even more than did LV. This
means that fluid administration in general may enhance
an important negative effect–via lower temperature–on
coagulation. On the other side fluid resuscitation may
improve tissue oxygenation, thus resulting in less acid-
osis, another factor influencing coagulation. Our study
could show that the LV strategy is preferential with re-
gard to the combination of these two parameters.

Impact on coagulation
HV decreased PTI significantly more than LV. Interest-
ingly, aPTT was not different between both groups. This
is in accordance with an in vitro model of dilutional

Table 3 Electrolytes and glucose

Baseline Haemorrhage Dilution ANOVA

Sodium (mmol/L)

LV 140 ± 3 139 ± 2 139 ± 3 p = 0.037

HV 138 ± 2 138 ± 1 139 ± 1 p = 0.033

p = 0.10 p = 0.11 p = 0.43

Potassium (mmol/L)

LV 3.7 ± 0.4 4.1 ± 0.3 3.7 ± 0.1 p = 0.01

HV 3.6 ± 0.2 4.0 ± 0.4 3.4 ± 0.2 p < 0.0001

p = 0.31 p = 0.48 p < 0.0001

Cloride (mmol/L)

LV 104 ± 3 105 ± 2 105 ± 3 p = 0.31

HV 106 ± 2 108 ± 1 107 ± 1 p < 0.0001

p = 0.14 p = 0.0003 p = 0.067

Calcium (mmol/L)

LV 1.32 ± 0.08 1.33 ± 0.08 1.27 ± 0.05 p = 0.17

HV 1.30 ± 0.07 1.29 ± 0.06 1.28 ± 0.06 p = 0.67

p = 0.57 p = 0.18 p = 0.70

Glucose (mg/dL)

LV 111 ± 18 120 ± 19 91 ± 18 p < 0.0001

HV 110 ± 21 146 ± 43 103 ± 17 p = 0.0019

p = 0.92 p = 0.062 p = 0.12

Measurements at baseline, after 50 % haemorrhage and after fluid
replacement (dilution) with an acetated, balanced crystalloid administering
either with a low (LV, n = 12) or a high (HV, n = 12) volume strategy
LV low volume resuscitation, HV high volume resuscitation
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coagulopathy where it was shown that aPTT is less af-
fected by dilution than PTI [31]. The influence on
plasma fibrinogen, considered to be the first coagulation
factor to fall below critical levels [21], was different be-
tween both treatment regimens with preferential effects
of LV. In both groups fibrinogen decreased during the
phase of haemorrhage, which might be due to consump-
tion of coagulation factors in the preparation phase, di-
lution by shift of intracellular and interstitial fluids into
the vascular space [32], and increasing hypoxia due to
worsened tissue oxygenation [23, 24]. It has been shown
that fibrinogen plays a crucial role in primary and sec-
ondary haemostasis. Hypofibrinogenaemia is strongly re-
lated to the severity of shock and the amount of blood
loss, and fibrinogen is almost always the coagulation fac-
tor which reaches critical low levels first [33]. This fact
is rather a result of a combination of hypoperfusion and
consecutive tissue hypoxemia as well as acidaemia than
the effect of one single trigger. Sour environmental
conditions following hypoperfusion lead to increased
breakdown of fibrinogen and might have additionally
negatively affected utilisation of fibrinogen with high
levels of soluble thrombomodulin and Prot C [34, 35].
Resuscitation and consecutive dilution are aggravating
factors of hypofibrinogenaemia, and dilution according
to different fluid resuscitation regimen leads to further
reduction of fibrinogen levels.
Haemorrhage inevitably results in adverse outcome,

elsewise aggressive reconstitution of coagulation compo-
nents and circulating volume is timely initiated. Damage
control resuscitation in case of acute trauma haemor-
rhage with blood components only does not consistently
improve coagulation potential [36]. Moreover, transfusion
of red blood cells might further “dilute” coagulation fac-
tors, and only substitution of components with a total high
fibrinogen load substantially enhance coagulation [37].
Lower platelets and lower plasma fibrinogen in the

HV group may also explain the significant higher impact
of HV on viscoelastic clot properties. In the present
study, prolongation of CFT and reduction of MCF sug-
gested weakened coagulation capacity after haemorrhage
and fluid replaced, with a significant impact when using
HV. However, it is of interest that in vivo haemodilution
of approximately 32 % (i.e. LV) shortened CT. This is in
line with a previous in vitro observation, which showed
the same effect of a 33 % haemodilution using saline
[38]. Shortened CT suggests enhanced thrombin gener-
ation. Dunbar et al. showed increased thrombin gener-
ation following dilution of plasma proteins [39]. A study
by Ruttmann and colleagues confirmed a faster onset of
coagulation, an increased rate of clot formation and an
increase in cloth strength after the initial fluid load in
the setting of vascular surgery. The observed shortening
of the thromboelastographic r-time, corresponding to

the thromboelastometric CT in our study, could be
interpreted as an imbalance between activated pro-
coagulants and a reduction in anticoagulants, particu-
larly AT III [40].
Another explanation is that in case of traumatic injury

procoagulant particles of different origin are being re-
leased into circulation that lead to enhanced thrombin
generation in trauma patients. These microparticles are
mainly released from activated cells like endothelial cells,
platelets, but also from erythrocytes and immunological
cells. Moreover, circulating particles directly related to
the site of injury like collagen, tissue factor, apoptotic
cell parts or phospholipids might contribute to increased
thrombin generation [41, 42].

Impact on electrolytes and glucose
No differences of electrolyte and glucose levels were ob-
served between the two forms of fluid replacement, with
one exception, namely potassium. Despite the fact that
ELO-MEL contains 5 mmol/L of potassium, the HV
strategy resulted in lower potassium values than did LV.
The reasons for this may lay in the capability of cells to
exchange potassium for protons.
High volumes of unbalanced solutions may lead to

hyperchloraemic acidosis. The administration of the cur-
rently investigated modern acetated balanced crystalloid
did not result in hyperchloraemic acidosis, even at high
volumes of 100 ml/kg. This may furthermore support the
use of balanced crystalloids in bleeding patients [5, 28].

Limitations
Though various swine models of haemorrhage are used
for studies on resuscitation and coagulation [16–18], we
have to take into consideration that we cannot directly
transfer the results to human clinical reality. In compari-
son to human individuals pigs present in a hypercoagu-
labe state.
As thromboelastometric measurements have not been

performed at the “haemorrhage point”, we cannot rule out
affection of the resuscitation data due to possible induc-
tion of a hypocoagulable condition according to shock.
In this study measure points were set in a narrow time

frame to evaluate LV versus HV resuscitation, so we can-
not draw any conclusions on medium-term or long-term
effects of each resuscitation regimen. Nevertheless, ini-
tial fluid resuscitation with LV of crystalloids proves to
be sufficient in our setting in the acute phase, and might
prevent from the potential adverse effects of high vol-
ume fluid resuscitation on shedding of glycocalyx and
haemostasis [43].

Conclusion
In a pre-clinical in vivo model with 50 % controlled
blood loss, a high volume administration (three-fold
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shed blood volume) of an acetated balanced crystalloid
does not lead to hyperchloraemic acidosis. It may, how-
ever, unfavorably influence clinical parameters, such as
higher blood pressure, lower body temperature and im-
paired coagulation, which could potentially increase
bleeding tendency in trauma patients. With respect to
the fact that we conducted our study in a swine model
of haemorrhage, replacement of acute blood loss with
just an equal amount of an acetated balanced crystalloid
appears to be the preferential treatment strategy in the
acute phase after controlled bleeding in this animal
model. Clinical trials regarding appropriate crystalloid
fluid replacement after severe haemorrhage are neces-
sary, but presumably hard to establish.
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