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Abstract
Background: Malignant hyperthermia (MH) is triggered by halogenated anaesthetics and
depolarising muscle relaxants, leading to an uncontrolled hypermetabolic state of skeletal muscle.
An uncontrolled sarcoplasmic Ca2+ release is mediated via the ryanodine receptor. A
compensatory mechanism of increased sarcoplasmic Ca2+-ATPase activity was described in pigs
and in transfected cell lines. We hypothesized that inhibition of Ca2+ reuptake via the sarcoplasmic
Ca2+-ATPase (SERCA) enhances halothane- and caffeine-induced muscle contractures in MH
susceptible more than in non-susceptible skeletal muscle.

Methods: With informed consent, surplus muscle bundles of 7 MHS (susceptible), 7 MHE
(equivocal) and 16 MHN (non-susceptible) classified patients were mounted to an isometric force
transducer, electrically stimulated, preloaded and equilibrated. Following 15 min incubation with
cyclopiazonic acid (CPA) 25 µM, the European MH standard in-vitro-contracture test protocol
with caffeine (0.5; 1; 1.5; 2; 3; 4 mM) and halothane (0.11; 0.22; 0.44; 0.66 mM) was performed. Data
as median and quartiles; Friedman- and Wilcoxon-test for differences with and without CPA; p <
0.05.

Results: Initial length, weight, maximum twitch height, predrug resting tension and predrug twitch
height of muscle bundles did not differ between groups. CPA increased halothane- and caffeine-
induced contractures significantly. This increase was more pronounced in MHS and MHE than in
MHN muscle bundles.

Conclusion: Inhibition of the SERCA activity by CPA enhances halothane- and caffeine-induced
contractures especially in MHS and MHE skeletal muscle and may help for the diagnostic assignment
of MH susceptibility. The status of SERCA activity may play a significant but so far unknown role in
the genesis of malignant hyperthermia.
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Background
In skeletal muscle, the action potential passes along the
surface membrane of the muscle fibre into the transverse
tubular system. Depolarisation of the voltage sensitive
dihydropyridine receptor leads to an opening of the ryan-
odine receptor in the nearby sarcoplasmic reticulum (SR).
Sarcoplasmic calcium (Ca2+) release via the ryanodine
receptor raises cytosolic Ca2+ and activates muscle contrac-
tion. Energy-dependent Ca2+ reuptake into the SR is
caused by the SR Ca2+-ATPase (SERCA) and enables skel-
etal muscle relaxation [1]. In individuals susceptible to
the autosomal dominant skeletal muscle disorder malig-
nant hyperthermia (MH), electro-mechanical coupling is
disturbed. Due to MH-associated mutations in the ryano-
dine receptor, triggering agents such as halogenated
anaesthetics cause an excessive Ca2+ release from the SR
resulting in intracellular hypermetabolism, increased
mitochondrial energy-turnover and metabolic failure
with a deficiency of adenosine-triphosphate [2]. This may
also lead to energetic exhaustion of the SERCA, the main
transporter for Ca2+ ions across the sarcoplasmic mem-
brane. Cyctosolic Ca2+ concentration is determined by sar-
coplasmic Ca2+ release and it's reuptake via the SERCA [3].
The mycotoxin cyclopiazonic acid (CPA) is a selective
inhibitor of SR Ca2+ reuptake [4] that has been used previ-
ously to study SERCA in different tissues [5,6].

We hypothesized that in skeletal muscle, preincubation
with CPA enhances halothane- and caffeine-induced con-
tractures in MH susceptible (MHS) more than in non-sus-
ceptible (MHN) skeletal muscle.

Methods
Muscle bundles of 30 patients undergoing a diagnostic in-
vitro contracture test (IVCT) were investigated to detect
MH susceptibility. With informed consent, surplus mus-
cle bundles were studied by the same IVCT protocol fol-
lowing SERCA inhibition by CPA.

Muscle biopsy
A muscle biopsy of the vastus lateralis muscle was per-
formed following a femoral nerve block. Muscle bundles
were immediately placed in carboxygenated (95% oxy-
gen, 5% carbon dioxide) Krebs-Ringer's solution (NaCl
118.1 mM; KCl 3.4 mM; CaCl2 2.5 mM; MgSO4 0.8 mM;
KH2PO4 1.2 mM; NaHCO3 25.0 mM; Glucose 11.1 mM)
and transported to the laboratory.

Standard IVCT
In brief, after length and wet weight of each muscle bun-
dle was measured, single muscle strips were mounted ver-
tically in the experimental bath perfused with
carboxygenated Krebs-Ringer's solution at 37°C, fixed to
an isometric force transducer (Lectromed Type 4150, UK)
and stimulated electrically with a supramaximal square

wave stimulus at 1 ms duration and a frequency of 0.2 Hz
(Hugo-Sachs-Elektronik, Type 215/I, Germany). Resting
tension and twitch height of the muscle strips were
recorded continuously by a digital recording system
(MusCo, RS BioMed, Germany). After equilibration, caf-
feine (Sigma Chemicals, Germany) respectively halothane
(Abott, Germany) were given at increasing concentrations
of 0.5; 1; 1.5; 2; 3; 4; and 32 mM respectively 0.11; 0.22;
0.44 and 0.66 mM at 3 min intervals. A contracture < 2
mN at caffeine 2 mM and halothane 0.44 mM was classi-
fied MHN. A stronger contracture following only one of
both drugs lead to the diagnosis MH equivocal (MHE). If
both drugs developed a significant contracture the patient
was assigned as MHS. Investigations were performed
within 5 hours after muscle biopsy [7].

CPA-IVCT
A modified contracture test was carried out studying the
drug CPA (M = 336.38 g mol-1) that was prepared in a
stock solution at 2.5 mM dissolved in dimethylsulphox-
ide 0,5% (DMSO) (all Sigma Chemicals, Germany). Fol-
lowing equilibration as described above, muscle bundles
were incubated with CPA 25 µM for 15 min. The contrac-
ture test was then carried out as described above.

Statistics
Data are shown as median and quartiles. IVCT results of
skeletel muscle contractures with CPA were statistically
evaluated in comparison to the results without CPA by
using the Friedman- and Wilcoxon-test for differences
with and without CPA. p < 0.05 was considered
significant.

Results
Thirty patients, 9 female and 21 male, with a mean age of
28 (15 – 32) years and a mean weight of 74 (62 – 87) kg
were studied. 7 patients were classified as MHS, 7 as
MHEh (susceptible only for halothane) and 16 as MHN
according to the criteria of the European Malignant
Hyperthermia group diagnostic protocol. In every patient,
an additional IVCT with CPA was performed. Muscle bun-
dles used for the IVCT and CPA-IVCT did not differ regard-
ing to length, weight, maximum twitch height, predrug
resting tension and predrug twitch height (Table 1).

In the caffeine contracture test, prior incubation with CPA
resulted in significant higher contractures compared to
the diagnostic IVCT in the MHS and MHEh group (Table
2). At the diagnostic threshold dose of caffeine 2 mM,
MHS muscles developed significantly higher contractures
with 32 (25 – 38) mN following preincubation with CPA
vs. 8 (4 – 12) mN without CPA. In the MHEh group CPA
preincubation lead to significantly higher contractures
with 12 (11 – 27) mN vs. 1 (0 – 1) mN without CPA,
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while the contractures of MHN muscle bundles did not
differ with or without CPA.

At halothane 0.44 mM, CPA preincubation increased con-
tractures of MHS and MHEh muscle bundles significantly
to 59 (33 – 73) mN respectively 45 (24 – 55) mN com-
pared to standard IVCT conditions with 20 (16 – 26) mN
respectively 4 (2 – 4) mN. In addition, in the MHN group
at halothane 0.44 mM contractures were significantly
increased by CPA preincubation to 16 (4 – 34) mN vs. 1
(1 – 1) mN without CPA (Table 3).

Discussion
In MH uncontrolled SR Ca2+ release, caused by MH asso-
ciated mutations mainly in the ryanodine receptor gene, is
widely accepted as the underlying pathophysiological
mechanism of hypermetabolism [8]. However, the detec-
tion of a mutation in the alpha 1-subunit of the voltage
sensitive dihydropyridine receptor in a French MH family
suggests a more complex pathogenesis of MH [9]. Accord-
ing to the unique mechanism of intracellular Ca2+ cycling
that induces contraction and relaxation in vertebrate skel-
etal muscle, sarcoplasmic Ca2+ release and sarcoplasmic

Table 1: Biometric data of muscle bundles used for the In-vitro Contracture-Test without (IVCT) and with preincubation with 
cyclopiazonic acid (CPA-IVCT); median and quartiles.

IVCT CPA-IVCT

Length (mm) 18 (16 – 20) 18 (15 – 20)
Weight (mg) 220 (190 – 233) 205 (180 – 240)
Maximum twitch height (mN) 24 (22 – 27) 25 (23 – 27)
Predrug resting tension (mN) 11 (9 – 14) 11 (8 – 14)
Predrug twitch height (mN) 57 (37 – 75) 42 (16 – 82)

Table 2: Caffeine-induced contractures with and without preincubation by cyclopiazonic acid 25 µM (CPA); median and quartile; * p < 
0.05 for differences with CPA and without CPA.

Caffeine [mM] 0.5 1 1.5 2 3 4 32

MHS [mN] 1 (0 – 1) 1 (1 – 1) 3 (1 – 6) 8 (4 – 12) 20 (15 – 31) 21 (14 – 35) 171 (136 – 137)
MHSCPA [mN] 3 (2 – 8)* 14 (11 – 31)* 27 (17 – 47)* 32 (25 – 38)* 31 (27 – 37) 34 (29 – 38) 131 (108 – 191)

MHEh [mN] 1 (1 – 2) 1 (1 – 1) 0 (0 – 0) 1 (0 – 1) 2 (1 – 3) 4 (3 – 7) 127 (108 – 190)
MHEhCPA [mN] 0 (0 – 1) 3 (0 – 5) 7 (3 – 19)* 12 (11 – 27)* 31 (29 – 37)* 46 (31 – 47)* 199 (156 – 227)

MHN [mN] 1 (0 – 1) 1 (0 – 1) 1 (1 – 1) 1 (0 – 1) 1 (0 – 1) 1 (0 – 2) 158 (108 – 176)
MHNCPA [mN] 2 (1 – 2) 2 (1 – 2) 1 (1 – 5) 1 (1 – 6) 4 (1 – 21)* 17 (4 – 27)* 167 (153 – 180)

Table 3: Halothane-induced contractures with and without cyclopiazonic acid 25 µM (CPA) pre-incubation; median and quartile; * p < 
0.05 for differences between IVCT and CPA-IVCT.

Halothane [mM] 0.11 0.22 0.44 0.66

MHS [mN] 5 (2 – 6) 14 (13 – 20) 20 (16 – 26) 19 (11 – 24)
MHSCPA [mN] 40 (26 – 58)* 52 (29 – 76)* 59 (33 – 73)* 48 (30 – 57)*

MHEh [mN] 0 (0 – 0) (0 – 1) 4 (2 – 4) 3 (2 – 4)
MHEhCPA [mN] 7 (1 – 11)* 25 (13 – 39)* 45 (24 – 55)* 45 (25 – 48)*

MHN [mN] 1 (0 – 2) 1 (0 – 1) 1 (1 – 1) 1 (0 – 1)
MHNCPA [mN] 1 (0 – 3) 2 (0 – 25) 16 (4 – 34)* 20 (9–31)*
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Ca2+ reuptake determine the mainstays of Ca2+ regulation.
Undoubtly, an altered SR Ca2+ release plays a crucial role
in the development of MH. However, it is completely
unclear why many MHS individuals may suffer from MH
only after several uneventful exposures to trigger agents
during anaesthesia. Several modulating factors have been
postulated to modulate cytosolic Ca2+ concentrations, e.g.
magnesium [10], sympathetic activity [11], temperature
[12], volatile anesthetics [13] or channel's redox state
[14]. While SR Ca2+ release was extensively studied in MH
[15], the impact of an altered SR Ca2+ reuptake on the
pathogenesis of MH by intrinsic or extrinsic factors is
poorly understood. Theoretically, a reduced activity of the
skeletal muscular SERCA type 1 may result in an elevated
cytosolic Ca2+ level due to a persistent slow Ca2+ efflux out
of the SR that is otherwise balanced by reuptake [16]. A
critical threshold of cytosolic Ca2+ may then be exceeded
and may lead to contracture development in vitro and to
the MH syndrome in susceptible patients. Interestingly,
CPA alone did not induce skeletal muscle contractures at
25 µM [17]. We assume that in our study SERCA was
inhibited almost completely, since CPA 10 µM reduced
the SERCA activity approximately by 70% in frog skinned
fibres [16] and nearly by 100% in rat skinned fibres [18].

In the presented study, CPA preincubation lead to a high
variability of halothane- respectively caffeine-induced
contractures especially in the MHS and MHEh group,
despite SERCA distribution does not differ between MHS
and MHN muscle [19]. Interestingly, the response of
MHEh muscle bundles to caffeine was enhanced by CPA
preincubation. However, at this stage, our results do not
suggest CPA as an alternative approach to improve differ-
entiation of MHE from MHN respectively MHS
individuals.

Ca2+ uptake capacity and SERCA activity was found to be
significantly increased in MHS pigs [20] and in HEK-293
cells transfected by MH mutants [21] but was described to
be lower in MHS muscle compared to normal human
skeletal muscle [22]. Since a leaky ryanodine receptor in
MHS individuals may lead to increased cytosolic calcium,
it looks feasible that SR-Ca-ATPase may be upregulated by
a compensatory mechanism.

Another option is that CPA itself modulates directly the
effect of the trigger agent. This is less likely since haloth-
ane and caffeine do have different binding sites at the sar-
coplasmic membrane [23].

The role of a reduced SERCA activity in the pathogenesis
of Brody's disease, a skeletal muscular myopathy, is well
known and characterized by painless muscle cramping
and exercise-induced muscle stiffness linked to a muta-
tion in the gene encoding SERCA [24,25]. The left-shift of

the dose-response curve for halothane- and caffeine-
induced contractures following inhibition of the sarco-
plasmic Ca2+ reuptake by CPA points out the essential part
of SERCAs in the regulation of cytoplasmic Ca2+. We
believe this may be an explanation why some MH suscep-
tible patients develop a MH crisis while others never or
only after several trigger exposures suffer from MH despite
a proven in vitro susceptibility. In this context, an altered
activity of SERCA due to intrinsic or extrinsic factors may
play a crucial role in the evolution of MH.

Conclusion
The present study demonstrates that CPA preincubation
enhances halothane- and caffeine-induced muscle con-
tractures in the IVCT of MHS, MHEh more than in MHN
patients.

Modulation of SERCA may play a significant role in the
development of malignant hyperthermia. Patients with a
high activity may compensate an increased Ca2+ release or
leakage from the SR while patients with a low activity of
the SERCA do not. Further investigations with focus on
extrinsic and intrinsic factors that modulate SERCA activ-
ity may be helpful to understand why MH patients may
have had several anaesthesias including trigger agents
without a significant reaction while developing a fulmi-
nate MH crisis at another occasion.

Abbreviations
Ca2+ Calcium

CPA Cyclopiazonic acid

IVCT In-Vitro Contracture Test

MH Malignant hyperthermia

MHEh Malignant hyperthermia equivocal; susceptible
only for halothane

MHN Malignant hyperthermia non-susceptible

MHS Malignant hyperthermia susceptible

SERCA Sarcoplasmic calcium adenosine triphosphatase

SR Sarcoplasmic reticulum
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