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Proteomic profiling of the phosphoproteins in the
rat thalamus, hippocampus and frontal lobe after
propofol anesthesia
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Abstract

further studying the anesthetic mechanism of propofol.

Background: Propofol is a safe and effective intravenous anesthetic that is widely used for the induction and
maintenance of anesthesia during surgery. However, the mechanism by which propofol exerts its anesthetic effect
remains unknown. The rapid onset of phosphorylation modifications coincides with that of propofol anesthesia.

Methods: Propofol-anesthetized rat models were built and phosphorylated proteins in the thalamus, hippocampus
and frontal lobe were enriched the to analyze the changes in these phosphoproteins after propofol anesthesia.

Results: Sixteen of these phosphoprotein spots were successfully identified using MALDI-TOF MS and a subsequent
comparative sequence search in the Mascot database. Of these proteins, keratin 18 and the tubulin 2c chain are
cytoskeletal proteins; keratin 18 and gelsolin are relevant to alcohol drowsiness. Based on Western blot analysis, we
also confirmed that the phosphorylation of these proteins is directly induced by propofol, indicating that propofol
anesthesia may be relevant to cytoskeletal proteins and alcohol drowsiness.

Conclusions: These identified propofol-induced phosphorylations of proteins provide meaningful contributions for
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Background
Propofol is widely used in medical procedures such as
gastrointestinal endoscopy in outpatient clinics [1],
pediatric MRI examinations [2] and pediatric radiother-
apy [3] because of its rapid onset, controllable delivery
and rapid recovery. Because of its various advantages and
wide range of applications, the mechanism of propofol as
a general anesthetic has been the focus of increasing
scientific research and much attention from anesthesi-
ologists. Nevertheless, the specific mechanism remains
unclear.

Thus far, anesthetic drugs have been known to exert
their effect mainly by regulating both the synaptic trans-
mission of key parts of the central nervous system and
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ion channels in the membrane [4]. Both the neurotrans-
mitters that play an important role in synaptic transmis-
sion and ion channels are mostly proteins. Protein
modifications, especially phosphorylation and dephos-
phorylation, play key roles in various cellular functions,
such as cell differentiation [5], cell growth and apoptosis
[6]. Kondratyuk et al. [7] confirmed that depolarization
can increase the phosphorylation of sodium channels in a
study conducted in rat brain synaptosomes. In addition,
abnormal phosphorylation can cause abnormal cellular ac-
tivities. Studies suggested that abnormal phosphorylation
of tau in brain tissue precedes the formation of neurofib-
rillary tangles in Alzheimer’s disease [8]. Furthermore, in-
creased tau phosphorylation has been reported in animals
subjected to isoflurane and desflurane inhalation, which
may contribute to the short-term cognitive dysfunction
following anesthetic administration [9,10]. Therefore, de-
tecting the changes in phosphorylation after propofol in-
fusion will be of great help in exploring the underlying
mechanism of the general anesthetic action of propofol.
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The brain is a highly interactive entity, in which a
number of separate brain areas cooperate to execute bio-
logical functions [11]. The thalamus may be thought as a
type of relay and is believed to act as the switchboard of
information between a variety of subcortical areas and
the cerebral cortex [12]. Additionally, functional brain
imaging also confirmed that the thalamus is the key tar-
get for anesthetic action [13]. Studies have shown that
the hippocampus is responsible for mental behaviors
such as initial learning and memory as well as for con-
scious behavior [14]. Wei H et al. [15] reported that pro-
pofol affects LTD expression in hippocampal CA1l
dendrites in rats, which was assumed to be the reason
for propofol-induced learning and memory damage. The
cerebral cortex is the final target of arousal systems, and
the dorsolateral prefrontal cortex is one of most import-
ant parts of the cerebral cortex, participating in activities
such as emotion recognition, voluntary movements and
working memory [16] as well as the maintenance of the
arousal state in mammals [17]. Thus, phosphorylated
proteins in the thalamus, hippocampus and frontal lobes
were extracted in an animal model induced by propofol
anesthesia, and the proteins that were differentially
expressed before and after anesthesia were identified
using two-dimensional electrophoresis and mass spec-
trometry in an attempt to uncover meaningful clues
about the anesthetic mechanism of propofol.

Methods

Experimental animals and treatment

Forty-eight male Sprague—Dawley (SD) rats (180-220 g)
were randomly separated into two groups: the control
group (C group, n = 24) and the propofol group (P group,
n=24). To decrease the individual difference, every 4
rats were divided into a sub-group and tissues from the
same sub-group were mixed together for one gel of 2D-
electrophoresis. All animal procedures were approved and
conducted in accordance with the guidelines for the care
and use of animals of the ethics committee of Southern
Medical University. Rats in the propofol group were
assigned to receive a 10 mg/kg bolus injection of propofol
(Astrazeneca, UK) delivered in 1 min and a continuous in-
jection of 24 mg/kg/h propofol via a tail vein. The rats in
the control group received an equivalent volume of 10%
Intralipid (Sino-Sweden Pharmaceutical Corp., Ltd., China)
via a tail vein. After 20 min, all rats were anesthetized with
urethane and sacrificed immediately by decapitation.
Three brain regions were collected and frozen in liquid ni-
trogen. The samples were stored at —80°C until further
processing.

Enrichment for phosphorylated proteins from tissues
Phosphoproteins from the thalamus, hippocampus and
frontal lobe of the rats were enriched on a QIAGEN

Page 2 of 10

PhosphoProtein Purification column (QIAGEN, Valencia,
CA) according to the manufacturer’s protocol. Briefly,
30 mg of tissue from the three brain regions were homog-
enized in 350 pl of lysis buffer containing 0.25% (w/v)
CHAPS, protease/phosphatase inhibitors, and benzonase
as described in the manufacturer’s protocol. The obtained
phosphorylated proteins were purified with a 2D Clean-
Up Kit (GE Healthcare). Next, the phosphoprotein yield
was determined with a 2D QUANT Kit (GE Healthcare).

Two-dimensional electrophoresis (2-DE)

An Immobiline Dry strip (pH 3-10 in the thalamus or
pH 4-7 in the hippocampus and frontal lobe, 24 cm
length, GE Healthcare) was rehydrated with 400 pg of
phosphoprotein in 450 pl of rehydration buffer contain-
ing 4% CHAPS, 7 M urea, 2 M thiourea, 20 mM Trizma
base, 65 mM DTT, 1% IPG buffer and 0.002% bromo-
phenol blue for 14 hr at room temperature. Isoelectric
focusing (IEF) was performed using the Ettan IPGphor 3
IEF System (GE Healthcare) for a total of 70 kVh. For the
second dimension, SDS-PAGE was performed using an
Ettan DALTsix Large Vertical system (Amersham, USA)
according to the following procedures: 45 min at a con-
stant power of 5 watts followed by 20 watts per gel until
the bromophenol blue reached the bottom of the gel. The
gels were then stained with 0.12% w/v Coomassie Brilliant
Blue G250. The 2D gels were analyzed with the DeCyder
software package (GE Healthcare, USA).

MALDI-TOF MS identification and database searching

The peptide mixtures were identified on a Bruker Ultraflex
III MALDI-TOF/TOF MS (Bruker Daltonics, Germany)
operating in reflectron mode with 20 kV accelerating volt-
age and 23 kV reflecting voltage. Peptide mass fingerprints
(PMFs) were searched against the SwissProt database using
the program Mascot 2.1 (Matrix Science Ltd). The search
parameters were as follows: trypsin digestion with one
missed cleavage; carbamidomethyl modification of cysteine
as a fixed modification; oxidation of methionine as a vari-
able modification; peptide tolerance maximum of +0.5 Da;
MS/MS tolerance maximum of +100 ppm; peptide charge
of +1; and p < 0.05 for a local PMF search.

Gene ontology analysis using GOMiner

Differentially expressed phosphoproteins were further
classified using the GoMiner software [18] in combination
with the GO database, which relies on a controlled vo-
cabulary to describe a protein in terms of its subcellular
localization, molecular function, or biological process.

Western blot analysis

A total of 18 SD rats were randomly divided into three
groups: the control group (C group), propofol anesthesia
for 20 min group (P1 group) and propofol anesthesia
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20 min followed by an arousal state for 1 h group (P2
group). The rats of the C and P groups were treated in
the same manner as described above. The rats of the P2
group were exposed to the propofol anesthesia used in
the P group for 20 min and were sacrificed 1 h post-
anesthesia. Equal amounts of total protein (40 pg) and
phosphoprotein (40 pg) were loaded and run on 12%
SDS/polyacrylamide gels and transferred onto polyvi-
nylidene difluoride membranes (PVDF) (Amersham
Pharmacia Biotech, Piscataway, NJ). To detect keratin
18 and phospho-keratin 18, the membranes were probed
with anti-cytokeratin 18 mouse monoclonal antibodies
(1:500; Santa Cruz Biotechnology, Heidelberg, Germany).
To detect gelsolin and phospho-gelsolin, the membranes
were probed with anti-gelsolin mouse monoclonal anti-
bodies (1:500; Santa Cruz Biotechnology, Heidelberg,
Germany). To detect apolipoprotein E and phospho-
apolipoprotein E, the membranes were probed with anti-
apolipoprotein E goat polyclonal antibodies (1:500; Santa
Cruz Biotechnology, Heidelberg, Germany). The immuno-
reactive bands were visualized using a Kodak 2000 M
camera system (Eastman Kodak, Rochester, NY) according
to the instructions of the manufacturer.

Statistical analysis

All the data were tested for a normal distribution before
statistical analysis, and the statistical analysis was per-
formed using SPSS 13.0. The statistical significance of the
difference among groups was evaluated using variance
(ANOVA) followed by the Student-Newman-Keuls post
hoc procedure. Significance was defined as P < 0.05.

Results

Quantitative comparison and identification of
phosophoprotein spots on 2D gels

To determine the change in the phosphoprotein profiles
of the thalamus, hippocampus and frontal lobe in response
to propofol, gel-based comparative proteomic analyses
were performed. As shown in Figure 1, 21 phosophopro-
tein spots were found to be significantly altered among
the three brain regions. Sixteen of these phosphoprotein
spots were successfully identified using MALDI-TOF MS
and the subsequent comparative sequence search in the
Mascot database (Table 1). Derived from the thalamus,
gelsolin and hemoglobin were substantially up-regulated,
but keratin 18 was down-regulated in the propofol group.
Derived from the hippocampus, glutathione peroxidase 3,
betaine-homocysteine S-methyltransferase 1, SET domain-
containing protein 6 and cytochrome c oxidase subunit 5A
were significantly overexpressed in the propofol group,
while macrophage-capping protein, tubulin beta-2c chain
and apolipoprotein E were expressed at a lower level than
in the control group. The levels of delta-aminolevulinic
acid dehydratase, 40S ribosomal protein SA, thioredoxin-
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like protein 1, ATP synthase subunit alpha, metastasis-
associated protein MTA1 and actin, which were derived
from the frontal lobe, were decreased in the propofol

group.

Gene ontology analysis of propofol-responsive
phosphoproteins

The list of differentially expressed phosphoproteins was
prepared for use in the GoMiner software in combination
with the GO database. As seen in Tables 2, 3 and 4, the
identified proteins were mainly distributed in the cyto-
plasm (12/16) and cytoskeleton (6/16), with functions in
metabolism (10/16), regulation (8/16), stimulus response
(6/16) and response to ethanol (5/16).

Western blot confirmation

To verify the 2D results, keratin 18 and gelsolin from the
thalamus and apolipoprotein E from the hippocampus
were analyzed using Western blots. These proteins were
selected because of interest in the components of the
cytoskeleton. The corresponding differential keratin 18 ex-
pression patterns that were identified using 2D electro-
phoresis and the MALDI-TOF mass spectra are shown in
Figure 2A-B and Figure 3A, respectively. To more rigor-
ously study the effect of propofol on the protein phos-
phorylation, 18 rats were divided into three groups: the C,
P1 and P2 groups. The amounts of phosphorylated and
total keratin 18 were determined using Western blots. As
shown in Figure 4A-B, the amount of total keratin 18
showed no significant difference among the three groups
(P =0.823). However, compared with the amount in the C
and P2 groups, the level of phospho-keratin 18 in the P1
group decreased dramatically in accordance with our 2D
gels results (P = 0.000). The corresponding differential gel-
solin and apolipoprotein E expression patterns that were
identified using 2D electrophoresis and the MALDI-TOF
mass spectra are shown in Figure 2C-E and Figure 3B-C,
respectively. As shown in Figure 4C-E, there were no
observable changes in total gelsolin (P =0.084) and total
apolipoprotein E (P =0.139). The amount of phospho-
gelsolin in the P1 group significantly increased compared
to the amount in the C and P2 groups (Figure 4C-D). (P =
0.000). The amount of phospho-apolipoprotein E in the
P1 group significantly decreased compared to that in the
C and P2 groups (Figure 4E-F) (P =0.000). These results
indicated that propofol can affect the extent of protein
phosphorylation.

Discussion

Although the anesthetic effect of propofol has been exten-
sively studied by anesthesiologists, the molecular mechan-
ism via which propofol exerts its anesthetic effect remains
unknown. Research has demonstrated that decreasing the
infusion speed of propofol could effectively decrease the
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thalamus (A), hippocampus (B) and frontal lobe (C).
.

Figure 1 Representative two-dimensional gels. Control group (C), Propofol group (P). The phosphoprotein spots differentially expressed in the

side effects resulting from propofol anesthesia [19].
Larsson et al. [20] also found that the minimum amount of
hemodynamic fluctuations and the most stable anesthetic
effect occurred when propofol was delivered at a speed of
10 mg/kg/min. Because the anesthetized rats in this experi-
ment were not subjected to any surgical procedures, the in-
fusion speed could be set a lower level (24 mg/kg/h), with
which a stable animal model was established.

Futter et al. [21] indicated that 7, 14 and 10 proteins
spots were found to be differentially expressed in rat brain
tissues 3 h, 24 h and 72 h after propofol anesthesia, re-
spectively. Uniform differentially expressed protein profiles
were noticed in the brain tissues of rats exposed to propo-
fol or sevoflurane, and some proteins even showed a trend
with the opposite change, indicating that the mechanism
of action of inhaled anesthetics was not completely identi-
cal to that of intravenous anesthesia [22]. The insoluble
protein profiles in the rat hippocampus were successfully

identified, and their correlation with cognitive dysfunction
after anesthesia was further explored by Xuena Zhang
et al. [23]. These experimental results provided a new clue
for explaining the molecular mechanisms of postoperative
cognitive dysfunction after anesthesia. However, these
studies examined total proteins, and protein synthesis is a
time-consuming process. In contrast, protein phosphoryl-
ation is a fast and reversible process that is involved in
a wide variety of crucial cellular activities [6], in which
the transcription and synthesis of new proteins are not
involved. In all post-translational modification, phos-
phorylation and dephosphorylation is the most important
which regulate all activites of life including cellular signal
transduction, cell differentiation, cell growth and apop-
tosis [5-7]. In addition, the rapid onset of phosphoryl-
ation modifications coincides with the onset of the propofol
anesthesia. Therefore, the profile of phosphorylated pro-
teins in the thalamus, hippocampus and frontal lobes was
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Table 1 MALDI-TOF MS identification of differentially expressed protein

Spot® Protein name Uniprot accession  Theoretical Mr (kDa)®  Total score®  Queries Mached® P/C®
1 Keratin 18 Q5BJY9 47.76 72 100% l
2 Gelsolin Q68FP1 86.07 24 99.96% 1
3 Hemoglobin P02091 15.85 30 99.95% 1
4 Macrophage-capping protein Q6AYC4 28.80 148 100% l
6 Tubulin beta-2C chain Q6PIT8 49.80 43 99.96% l
7 Apolipoprotein E P02650 3575 29 99.92% l
9 Glutathione peroxidase 3 p23764 2527 87 100% 1
10 Betaine-homocysteine S-methyltransferase 1 096171 44.98 62 100% 1
11 SET domain-containing protein 6 D375K5 5455 76 100% i
12 Cytochrome c oxidase subunit 5A P11240 16.20 29 99.91% 1
13 Delta-aminolevulinic acid dehydratase P06214 36.03 33 99.95% !
15 40S ribosomal protein SA P38983 4291 150 100% !
16 Thioredoxin-like protein 1 Q920J4 3225 156 100% l
18 ATP synthase subunit alpha P31399 59.75 23 99.95% l
19 Metastasis-associated protein MTA1 062599 7941 52 100% l
21 Actin, aortic smooth muscle P62738 4201 62 100% l

“The numbers indicate the spot positions in 2D gel as shown in Figure 1.
PCaculated from the database entry without any processing.

“By MALDI-TOF MS analysis.

9By MALDI-TOF MS analysis.

¢P/C propofol group compared with control group.

determined using proteomics in this study. Using mass
spectrometry, sixteen proteins were found to be differen-
tially expressed after propofol anesthesia, and the phos-
phorylation of keratin 18, gelsolin and apolipoprotein E
was measured using Western blot to verify the 2D electro-
phoresis results.

The identified differentially expressed phosphorylated
proteins were subjected to bioinformatics analysis. Six
proteins, including keratin 18, gelsolin, tubulin 2c chain,
macrophage-capping protein, actin and apolipoprotein E
were identified. These proteins form cytoskeletal struc-
tures or participate in stabilizing the cytoskeletal structure.
Additionally, the changing trends in the phosphorylation

Table 2 The subcellular distribution of the identified
proteins after anesthesia by propofol

Subcellular Protein name

Keratin 18, gelsolin, MTA1, actin, Apolipoprotein E,
M-capping protein, tubulin 2c chain, thioredoxin-like
protein 1, Betaine-homocysteine S-methyltransferase 1,
40S ribosomal protein SA, ATP synthase subunit alpha,
Delta-aminolevulinic acid dehydratase

Cytoplasm

Nucleus keratin 18, M-capping protein, SET domain-containing

protein 6, 40S ribosomal protein SA, MTA1

keratin 18, gelsolin, tubulin 2c chain, M-capping protein,
actin, Apolipoprotein E

Cytoskeleton

Mitochondrion  Cytochrome c oxidase subunit 5A, ATP synthase
subunit alpha

levels of the three proteins were verified using Western
blots, suggesting that propofol anesthesia can cause
changes in cytoskeletal proteins in brain tissue.

The cytoskeleton mainly consists of microtubules, mi-
crofilaments and intermediate filaments. The tubulin 2c
chain is the main structural component of microtubules,
and actin is the main constituent of microfilaments. In
addition to maintaining the stability of cell shape and
structure, cytoskeletal proteins also regulate various mo-
lecular activities such as intracellular transport [24], energy
and information transfer [25], and signal transduction.

Table 3 The molecular function of the identified proteins
after anesthesia by propofol

Molecular Protein name

function

Binding MTAT1, actin, Apolipoprotein E, ATP synthase subunit
alpha, gelsolin, Macrophage-capping protein,
Betaine-homocysteine S-methyltransferase 1,
Hemoglobin, 40S ribosomal protein SA,
Delta-aminolevulinic acid dehydratase

Catalytic gelsolin, Glutathione peroxidase 3, tubulin 2c chain,
Hemoglobin, Cytochrome ¢ oxidase subunit 5A,
Apolipoprotein E, SET domain-containing protein 6

Antioxidant Glutathione peroxidase 3, Apolipoprotein E, Delta-

aminolevulinic acid dehydratase, thioredoxin-like
protein 1

gelsolin, Apolipoprotein E, Delta-aminolevulinic
acid dehydratase, actin, Keratin 18

Response to
ethanol
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Table 4 The biological processes being participated in by
the identified proteins after anesthesia by propofol

Biological Protein name

processes

Metabolic Keratin 18, Hemoglobin, ATP synthase subunit

process alpha, actin, thioredoxin-like protein 1, SET
domain-containing protein 6, Betaine-homocysteine
S-methyltransferase 1, Glutathione peroxidase 3,
Apolipoprotein E, MTA1

Biological Keratin 18, gelsolin, Apolipoprotein E, Macrophage-

regulation capping protein, tubulin 2¢ chain, Betaine-homocysteine

S-methyltransferase 1, SET domain-containing protein 6

Developmental  Keratin 18, ATP synthase subunit alpha, tubulin 2c

process chain
Stimulus Keratin 18, gelsolin, thioredoxin-like protein 1,
reponse Delta-aminolevulinic acid dehydratase, Apolipoprotein E,

SET domain-containing protein 6
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Alterations in cytoskeletal architecture can result in
changes in ion channels and account for the occurrence
and development of brain-related disorders, which was
first found in neurocytes. In 1981, Fukuda et al. [26] re-
ported for the first time that cytoskeletal architecture
disruption could inhibit the excitatory functions of sevr-
ral central nervous systems (CNS) component. In 1988,
Srinivasan et al., using the voltage-clamp technique [27],
confirmed that the cytoskeleton was capable of modu-
lating sodium channels in neurocytes. Propofol-induced
amnesia may be related to the down-regulation of activity-
regulated cytoskeleton-associated protein (Arc) in the
hippocampus. In contrast, the Arc mRNA level does not
change significantly, indicating that propofol may exert
its function by affecting protein modification [28].
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Microtubule-associated proteins (MAPs) bind to the
tubulin subunits that form microtubules. Tau proteins
are type II MAPs that are abundant in neurons in the
central nervous system, and their phosphorylation state
can be modulated by a specific set of phosphatases and
phosphokinases, which play a vital role in maintaining
neuronal function and development. Hyperphosphoryla-
tion of the tau protein is assumed to be involved in the
neuropathogenesis of several types of dementia, such as
Alzheimer’s disease and postoperative cognitive dysfunction

[8]. Sevoflurane, isoflurane and propofol can induce
tau hyperphosphorylation, which may account for the
occurrence of postoperative cognitive dysfunction [10,29].
Reduced apolipoprotein E phosphorylation caused by
anesthetic propofol was demonstrated and was later con-
firmed using Western blot in this experiment. Apolipo-
protein E is synthesized and secreted predominantly by
astrocytes and microglia in the brain, which participates in
neuron repair after injury, dendritic growth and the main-
tenance of synaptic plasticity [30]. Apolipoprotein E also
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plays a vital role in the pathogenesis of Alzheimer’s disease,
where apolipoprotein E is found in the amyloid plaques
and neurofibrillary tangles characteristic of Alzheimer’s
disease [31].

The deposition of monomers and polymers of hyper-
phosphorylated tau protein in the brain of a trans-
genic mice expressing apolipoprotein E4 (C112R) [32,33]
suggested that apolipoprotein E affected tau phosphoryl-
ation. We speculate that the postoperative cognitive dys-
function induced by anesthetic propofol may result from
alterations in serum apolipoprotein E levels. Nevertheless,
the interwoven relationship between these factors and
whether apolipoprotein E phosphorylation is involved in
this process must be further explored.

Bioinformatics analysis indicated that gelsolin and kera-
tin 18 exhibit responses to ethanol. Ethanol can weaken
our body’s reactions to outside stimulation, which is simi-
lar to the behavioral changes that emerge after propofol
anesthesia. Amino acid neurotransmitter receptors play an
important role in alcohol dependence [34]. Ethanol is both
a gamma-aminobutyric acid (GABA) receptor agonist and
an N-methyl-D-aspartate (NMDA) receptor antagonist,
which results in degenerative alterations of the nervous
system during brain development by inhibiting ERK phos-
phorylation [35,36]. The effect of ethanol is similar to that
of propofol on brain stem cell apoptosis during brain de-
velopment. Glutamic acid (Glu) serves as the main neuro-
transmitter for the inputs and outputs as well as the
intrinsic circuitry of the hippocampus, which appears to
be the brain region that is most sensitive to alcohol
damage [37] and is the target of the anesthetic effect of
propofol. In summary, the targets of and transmitters in
general anesthetic agents are similar to those of the effect
of alcohol on the brain. Furthermore, studies have af-
firmed that ethanol was able to induce the dephosphor-
ylation of keratin 18 in the liver and kidney [38]. In our
study, keratin 18 was also dephosphorylated in the rat
hippocampus following propofol administration compared
with the controls. We speculated that the proteins respon-
sive to ethanol may also contribute to the anesthetic effect
of propofol. However, the specific mechanisms require
further study.

Conclusions

In conclusion, 16 differentially expressed phosphory-
lated proteins in the thalamus, hippocampus and frontal
lobes were found using proteomics methods in this study.
Additionally, bioinformatics were also used to analyze
the common characteristics of the differentially expressed
proteins to study the underlying mechanisms of the
general anesthetic action. These experimental data will
definitely provide meaningful references for the clarifica-
tion of the mechanism of action of the general anesthetic
propofol.
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