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Abstract

Background Animal experiments have confirmed that remote ischemic preconditioning (RIPC) can reduce hepatic
ischemia-reperfusion injuries (HIRIs), significantly improving early tissue perfusion and oxygenation of the residual
liver after resections, accelerating surgical prognoses, and improving survival rates. However, there is still controversy
over the role of RIPC in relieving HIRI in clinical studies, which warrants clarification. This study aimed to evaluate

the beneficial effects and applicability of RIPC in hepatectomy and to provide evidence-based information for clinical
decision-making.

Methods Randomized controlled trials (RCTs) evaluating the efficacy and safety of RIPC interventions were col-
lected, comparing RIPC to no preconditioning in patients undergoing hepatectomies. This search spanned from data-
base inception to January 2024. Data were extracted independently by two researchers according to the PRISMA
guidelines. The primary outcomes assessed were postoperative alanine transaminase (ALT), aspartate transaminase
(AST), total bilirubin (TBIL), and albumin (ALB) levels. The secondary outcomes assessed included duration of surgery
and Pringle, length of postoperative hospital stay, intraoperative blood loss and transfusion, indocyanine green (ICG)
clearance, hepatocyte apoptosis index, postoperative complications, and others.

Results Ten RCTs were included in this meta-analysis, with a total of 865 patients (428 in the RIPC group and 437

in the control group). ALT levels in the RIPC group were lower than those in the control group on postoperative day
(POD) 1 (WMD=-59.24,95% Cl: —115.04 to — 3.45; P=0.04) and POD 3 (WMD=-27.47,95% Cl: —52.26 to — 2.68;
P=0.03). However, heterogeneities were significant (P=89% and F=78%), and ALT levels on POD 3 were unstable
based on a sensitivity analysis. AST levels on POD 1 in the RIPC group were lower than those in the control group
(WMD=-50.03,95% Cl: - 94.35 to —5.71; P=0.03), but heterogeneity was also significant (P=81%). A subgroup
analysis showed no significant differences in ALT and AST levels on POD 1 between groups, regardless of whether the
Pringle maneuver or propofol was used for anesthesia (induction only or induction and maintenance, P>0.05). The
remaining outcome indicators were not statistically significant or could not be analyzed due to lack of sufficient data.

Conclusion RIPC has some short-term liver protective effects on HIRIs during hepatectomies. However, there is still
insufficient evidence to encourage its routine use to improve clinical outcomes.

Trial registration The protocol of this study was registered with PROSPERO (CRD42022333383).
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Introduction

Hepatectomy is a basic and effective treatment for pri-
mary and secondary liver malignancies that improves
survival rates, particularly for patients with early and
middle stage localized disease [1, 2]. With the develop-
ment of modern medicine, precise hepatic segmentec-
tomies are becoming increasingly mature, and as such
higher requirements are needed for anesthesia and peri-
operative management [3]. The main surgical problem
during segmental hepatectomies is intraoperative blood
loss. During liver resections, intermittent portal vein
triple clamping (Pringle maneuver) is associated with
controlled low central venous pressure, which reduces
intraoperative blood loss [2, 4]. However, subsequent
tissue ischemia and reperfusion may lead to hepatic
ischemia-reperfusion injuries (HIRIs), which usu-
ally occur when blood supply to the liver is temporarily
blocked and subsequently restored [5].

The mechanisms involved in HIRIs are complex and
yet to be fully understood. These include the adhesion
of white blood cells to endothelial cells, the activation
of Kupfter cells, the release of inflammatory cytokines,
free radicals, nitric oxide and adenosine, the induction of
the inflammatory cascade, and cellular apoptosis [6, 7].
Tolerance of liver tissue to ischemia depends on several
factors, such as duration of ischemia, liver collateral cir-
culation, and liver metabolic needs, among others. There-
fore, it is difficult to determine the exact safe ischemic
time for each surgery. On the other hand, while the res-
toration of blood flow is essential to prevent irreversible
liver cell damage, the reperfusion itself may aggravate
ischemic liver cell damage.

After an extensive hepatectomy, HIRI of the residual
liver may be a serious complication, leading to postop-
erative liver dysfunction and increased mortality [5].
In order to protect the residual liver from HIRI, several
techniques have been used, including drugs and ischemic
preconditioning, or remote ischemic preconditioning
(RIPC), none of which are established as standard of
care. Organ protection by RIPC began with the study of
cardiac muscle protection, which involves repeated tem-
porary cessation of blood flow to the limbs [5, 8]. RIPC
procedures are non-invasive and therefore a more suit-
able method to reduce HIRI.

Even though RIPC has been shown to have hepato-
protective effects in several animal experiments [9-11],
patient-based studies have shown controversial results
[12-14]. Only two systematic reviews on this topic were

found in the literature [15, 16], both of which contained
fewer studies and less data than this study. In addition,
one mistakenly included patients with remote ischemic
postconditioning (RIpostC) in the meta-analysis, and
the other included a randomized controlled trial (RCT)
of liver transplant recipients. Moreover, these were pub-
lished within a year of each other, despite yielding con-
flicting conclusions. Hence, this study aimed to provide
an updated systematic review of the perioperative effects
of RIPC in patients undergoing hepatectomy. The study’s
hypothesis is that RIPC is beneficial in reducing the
effects of HIRI in patients undergoing hepatectomy.

Methods

This systematic review was prepared in concordance with
PRISMA and AMSTAR2 recommendations to assess
methodological quality [17, 18]. RCTs were included to
compare perioperative outcomes in patients undergo-
ing hepatectomy with or without RIPC. This systematic
review has been registered with PROSPERO, under regis-
tration number CRD42022333383.

Search strategy

Articles published until December 2023 were searched
via PubMed, OVID, Web of Science, Cochrane library
clinical trial databases, Embase, and other sources with-
out language restrictions. Search terms consisted of vari-
ous combinations of ‘remote ischemic preconditioning,
‘distant ischemic preconditioning, ‘remote ischemic con-
ditioning, ‘remote ischemic adaptation; ‘limb ischemic
preconditioning, or ‘RIPC;, and ‘hepatectomy, ‘liver
resection; ‘liver transplantation; ‘liver graft, or ‘hepatic
ischemia-reperfusion’ In addition, references of included
studies and other existing meta-analyses were collected
to obtain additional eligible studies (Supplementary
Table S1).

Inclusion and exclusion criteria
Four researchers independently reviewed and retrieved
all full-text articles simultaneously. Different views were
discussed among the four researchers, and duplicated
articles in databases were merged. When duplicate stud-
ies were found from the same population, the latest or
most complete study was included.

The inclusion criteria were as follows: (1) subjects were
patients undergoing hepatectomy or living donor hepa-
tectomy; (2) intervention was RIPC versus control group
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without RIPC; (3) research type was prospective RCT; (4)
outcomes were postoperative liver synthetic function.
The exclusion criteria were as follows: (1) animal exper-
imental studies and ex vivo, in vitro or in silico model
studies; (2) retrospective or single-arm studies; (3) case
studies, cross-over studies, studies without a separate
control group, editorials, meta-analyses and reviews; (4)
abstract only studies; (5) studies without postoperative
aminotransferase levels or data from review articles.

Data extraction

Two researchers (Chun Tian and Aihua Wang) indepen-
dently extracted data from each article. Any disagree-
ments were resolved by consensus of a third researcher
(He Huang). The following information was extracted
from the included articles: the first author, year of pub-
lication; country or region of study, type of study, sam-
ple size, demographic data, outcomes, among others.
If this information was not available in the study’s text,
study graphs were enlarged and measured using the Grab
software. In instances where data were not reported or
unclear, researchers were contacted via e-mail (max. 2
attempts).

Assessment of methodological quality and risk of bias
Included RCTs were assessed using the recommended
Cochrane Collaboration biased-risk assessment table.
This assessment was carried out independently by four
researchers. Any disagreements were resolved by consen-
sus. The biased-risk assessment table included random
sequence generation, allocation concealment, blinding of
participants and personnel, blinding of outcome assess-
ment, incomplete outcome data, selective reporting,
and other bias. Each study was classified as high, low, or
uncertain risk.

The methodological quality of the results was evalu-
ated using the Grades of Recommendation, Assessment,
Development, and Evaluation (GRADE) guidelines. Ulti-
mately, the quality of evidence for each outcome was
rated as high, moderate, low, or very low.

Primary and secondary outcomes

The primary outcomes evaluated in this study were those
directly related to postoperative liver synthetic function,
including postoperative alanine transaminase (ALT),
aspartate transaminase (AST), total bilirubin (TBIL), and
albumin (ALB) levels. The secondary outcomes assessed
included duration of surgery and Pringle, length of post-
operative hospital stay, intraoperative blood loss and
transfusion, indocyanine green (ICG) clearance, hepato-
cyte apoptosis index, postoperative complications, and
others.
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Statistical analysis

Statistical analysis was performed using the Review Man-
ager 5.4 software. Continuous outcomes were reported
as weight mean differences (WMD) with 95% confi-
dence intervals (CI), and dichotomous outcomes were
presented as odds ratios (OR) with 95% CL In order to
quantify inconsistencies of studies included in the meta-
analysis, Cochran’s Q-test and P statistics were used. Low
heterogeneity was considered when F<50%, and the
fixed-effect model was used for analyses. Moderate het-
erogeneity was considered when ”>50% and high het-
erogeneity when F#>75%, and the random-effects model
was used for analyses. Subgroups analyses or sensitivity
analyses were then performed, and a descriptive analysis
was conducted if a meta-analysis was inappropriate. Pub-
lication bias was assessed using funnel plots. Results were
considered statistically significant when P<0.05.

Results

Study characteristics

A total of 2630 relevant articles were initially identified,
of which 1483 were duplicates. Excluding duplicates, a
total of 1147 studies remained. After analyzing article
titles and abstracts, 1123 articles did not meet the study
criteria and were also excluded, leaving 24 studies for
full-text review. After review, 10 RCTs [12-14, 19-25]
met the eligibility criteria for data synthesis (Fig. 1).

The 10 prospective RCTs included a total of 865
patients undergoing hepatectomy (428 in the RIPC group
and 437 in the control group). All included studies evalu-
ated the liver synthetic function of postoperative residual
livers using transaminase or TBIL levels. The basic char-
acteristics of these studies are summarized in Table 1.

Assessment of bias risk

The Cochrane Collaborative Bias Risk tool was used to
evaluate the risk of bias in the included RCTs, as shown
in Fig. 2. Seven studies [12, 13, 19, 21, 23-25] were con-
sidered to have low risk bias in either six or seven meas-
ures, and no measure was considered high risk. One
study [20] was considered to have low risk of bias in four
measures, and the remaining three measures were con-
sidered to be uncertain. Only two studies [14, 22] were
considered to have high risk of bias measures, with the
remaining studies presenting a low risk.

Effects of RIPC on primary outcomes

All 10 studies [12—14, 19-25] evaluated ALT and AST
levels on postoperative day (POD) 1, six [13, 19-22,
24] on POD 3, four on POD 5, and three on POD 7.
Given that heterogeneity was high (I>=88%; F=79%),
the random-effects model was applied to pool the
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Fig. 1 Flowchart of preferred reporting items for systematic reviews and meta-analyses (PRISMA) method for article selection

data. The results showed that ALT levels of the RIPC
group were lower than the control group on POD 1
(WMD=-59.24, 95% CI: —115.04 to —3.45; P=0.04)
and POD 3 (WMD=-27.47, 95% CI: —52.26 to —2.68;
P=0.03) (Fig. 3A). AST levels of the RIPC group were
lower than the control group on POD 1 (WMD = —50.03,
95% CI: - 94.35 to —5.71; P=0.03) (Fig. 4A). Similar het-
erogeneities and pooled estimates of ALT and AST lev-
els on POD 1 were obtained when one of the RCTs was
excluded, suggesting that the results were stable, and that
the evidence quality was considered moderate (Figs. 3B,
and 4B). However, the pooled estimates of ALT levels
obtained on POD 3 changed (WMD=-29.35, 95% CI:
—59.57 to 0.86; P=0.06) (Fig. 3B). This indicated that the
analysis results of ALT levels on POD 3 were unstable.

Six RCTs [13, 19-22, 24] evaluated TBIL levels on
POD 1 and POD 3, four on POD 5, and four on POD
7. Given that heterogeneity was high (I?=84%), the
random-effects model was applied to pool the data. The
results showed no significant differences in postopera-
tive TBIL levels between the RIPC group and the con-
trol group (Supplementary Fig. S1). The robustness of
these results was confirmed by a sensitivity analysis.

Three RCTs [21, 22, 24] evaluated ALB levels on
POD 1 and POD 3. There was low heterogeneity
among these RCTs (I’=0%), and therefore the fixed-
effects model was applied to pool the data. The results
showed no significant differences in postoperative
ALB levels between the RIPC group and the control
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Fig. 2 Risk of bias of the included studies

group (Supplementary Fig. S2). The robustness of
these results was confirmed by a sensitivity analysis.

Effects of RIPC on secondary outcomes
Nine RCTs [12, 13, 19-21, 23-25] provided data on
operative times. RIPC interventions did not significantly
alter the duration of surgeries (WMD=1.54, 95% CI: -
4.09 to 7.16; P=0.59) (Supplementary Fig. S3). In seven
RCTs [12, 19-24], a total of 661 patients were compared
and evaluated for intraoperative blood loss. RIPC did not
reduce intraoperative bleeding in hepatectomy patients
when compared to the control group (WMD =0.40, 95%
CI: - 9.20 to 10.01; P=0.93) (Supplementary Fig. S4). Het-
erogeneities in the above analyses were low, and therefore
the fixed-effects model was applied to pool the data. In
addition, the stability of the above results was confirmed
using a sensitivity analysis.

Five RCTs [12, 13, 19, 20, 24] provided data on post-
operative hospital stays. The heterogeneity of the
analysis was moderate (I°=56%), and therefore the

random-effects model was applied to pool the data.
RIPC interventions did not significantly alter postopera-
tive hospital stays (SMD=-0.53; 95% CI: —1.28 to 0.22,
P=0.17) (Supplementary Fig. S5). The robustness of
these results was confirmed by a sensitivity analysis.

Seven RCTs [12, 13, 20, 21, 23-25] provided data on
postoperative complications. The heterogeneity of the
analysis was moderate (I?=0%), and therefore the fixed-
effects model was applied to pool the data. Based on
the Modified Clavien Grading System, a meta-analysis
showed no significant difference in postoperative compli-
cations between RIPC and control groups in grades I-II
(SMD=1.13; 95% CI: 0.77 to 1.67, P=0.53) and grades
II-V (SMD =1.39; 95% CI: 0.68 to 2.82, P=0.36) (Supple-
mentary Fig. S6). There was also no statistical difference
in intra-abdominal collection or bleeding, bile leakage
after hepatobiliary and pancreatic surgery (PHBL), pul-
monary complications, and wound infection or bleeding
between the two groups. The robustness of these results
was confirmed by a sensitivity analysis.
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Fig. 3 A, Forest plots for postoperative ALT levels. B, Forest plots of the sensitivity analysis
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The other four outcomes could not be meta-analyzed
due to data availability limitations, including intraop-
erative transfusion, ICG clearance, hepatocyte apop-
tosis index, and postoperative TNF-a levels. However,
two studies [19, 20] with a total of 92 patients (45 in the
RIPC group and 47 in the control group) evaluated post-
operative TNF-a levels on POD 1, suggesting that RIPC
interventions could inhibit inflammatory responses by
reducing TNF-a in patients undergoing hepatectomies.

Subgroup analysis

The use of the Pringle maneuver during hepatectomies
is highly likely to cause HIRI [5]. Therefore, a subgroup
analysis was performed to determine whether the Pringle
maneuver should be used routinely. In addition, a sub-
group analysis was also conducted to determine whether
propofol was used as anaesthesia. The results showed
that ALT and AST levels on POD 1 were not significantly
different between the RIPC and control groups, regard-
less of whether the Pringle maneuver or propofol were
used (induction only or both induction and maintenance)
(all P>0.05) (Figs. 5, and 6). The subgroup analysis did
not significantly reduce heterogeneity.

Publication bias

Supplementary Fig. S7 illustrates a funnel plot for the
assessed postoperative ALT, AST, TBIL, and ALB levels.
Funnel plots showed asymmetric patterns, suggesting a
possible publication bias in this meta-analysis.

Discussion

Comparative analysis with other systematic reviews

The first systematic review [16] on this topic was pub-
lished online in January 2021, and included seven studies
with a total of 459 patients. The evaluation results showed
that ALT and AST levels on POD 1 in the RIPC group
were lower. However, it included a study by Gao and col-
leagues [26] which was RIpostC, and results changed sig-
nificantly when this study was excluded. The researchers
also noted that the studies included in the meta-analysis
were highly heterogeneous, and that the results required
cautious interpretation. Based on current evidence, the
researchers suggested that RIPC did not alleviate HIRI in
patients undergoing hepatectomy, which is inconsistent
with our findings. The researchers also found that levels
of ALT and AST on POD 1 were not significantly differ-
ent, regardless of whether vascular control techniques
(Pringle maneuver) were used, which is consistent with
our findings. In addition, our meta-analysis showed that
when propofol was used for anesthesia (induction only
or both induction and maintenance), RIPC interventions
did not reduce ALT or AST levels on POD 1.
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The second systematic review [15] on this topic was
published in an Epub format in December 2021. Six
papers were included, with a total of 216 patients who
underwent RIPC and 212 patients who served as con-
trols. The reported ALT, AST and TBIL levels in the
RIPC group were significantly lower than those in the
control group on POD 1, suggesting that RIPC had a
strong short-term hepatoprotective effect against HIRI,
which corroborates the results found in our study. The
researchers also found a weak hepatoprotective effect of
RIPC in patients with cirrhosis due to their higher sensi-
tivity to HIRI. This finding was not observed in our study.
The researchers suggested that long-term effects of RIPC
should be considered in future studies. However, the
inclusion of a RCT including liver transplant recipients
was a limiting factor for that study, which was excluded
in our review.

Clinical implications

The main objective of this systematic review was to eval-
uate the potential beneficial effect of RIPC in reducing
HIRI in the residual livers of patients undergoing hepa-
tectomy. It should be noted that, in order to be as broad
and comprehensive as possible in terms of the number of
publications and the outcomes evaluated, studies ranging
from liver transplant donors to cirrhotic patients were all
included in this review. Therefore, the results obtained
here have universal applicability. In addition, each post-
operative complication that was suitable for meta-anal-
ysis was evaluated individually, rather than as a mere
‘incidence’

RIPC is the administration of multiple transient cycles
of ischemia/reperfusion, usually at a remote site or organ
far from the target organ [13]. The application of RIPC
is generally well tolerated, does not cause substantial
harm to the patient, and does not interfere with the sur-
gical process. Therefore, its application in clinical prac-
tice is easy to perform and may bring potential benefits
to patients.

During the qualitative analysis of the included studies,
it was noted that several studies reported a decrease in
liver transaminases on POD 1 in hepatectomy patients
with RIPC [14, 19, 22, 25]. Two studies have also reported
a decrease in TBIL levels on POD 5 and POD 7 [14, 19].
However, no differences between the RIPC and control
groups were found in other studies, leading to the con-
clusion that RIPC is ineffective in reducing HIRI. How-
ever, it is worth noting that in the first published RCT,
RIPC was implemented through three 10-mincycles of
alternate ischemia and reperfusion to the leg [25], while
in the rest of the subsequent studies, the ischemia and
reperfusion time of RIPC were both 5-mincycles, which
may account for these differences.
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Fig. 5 Forest plots of a subgroup analysis on the use of the Pringle maneuver. A, ALT levels on POD 1. B, AST levels on POD 1

The qualitative analysis of the included studies showed
that RIPC produces poor results in living donor hepa-
tectomies [13, 21], and it appears that prolonged dura-
tion of surgeries also cause RIPC to gradually lose its
protective effects [12, 13, 20, 23]. In addition, one study
also analyzed a subgroup of patients with cirrhosis and
indicated that the effect of RIPC on postoperative ALT
levels in hepatectomy patients was not affected by cir-
rhosis [23]. Furthermore, two studies suggested that

RIPC interventions can inhibit inflammatory responses
by reducing TNF-a levels on POD 1 in hepatectomy
patients, which warrants further investigation [19, 20].

In this meta-analysis, RIPC was found to reduce
ALT and AST levels on POD 1 in patients undergoing
hepatectomies. These outcomes are considered clini-
cally relevant because ALT and AST levels are associ-
ated with liver synthetic function, suggesting that RIPC
can alleviate early HIRI after hepatectomies. Similarly,
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Fig. 6 Forest plot of a subgroup analysis on the use of propofol for anesthesia

although TBIL levels are considered a very sensitive
indicator of liver failure after hepatectomy, there was
no significant difference in postoperative TBIL levels
between the RIPC and control groups. In a subgroup
analysis, RIPC interventions were not found to reduce
ALT or AST levels on POD 1 irrespective of the use of
the Pringle maneuver or propofol.

On the other hand, there appeared to be negligible
differences in clinical practice in terms of overall out-
comes, such as intraoperative transfusion, length of
hospital stays, and hepatocyte apoptosis index. In addi-
tion, conflicting results of previous studies on this topic
have undoubtedly hindered the assessment of the effec-
tiveness of RIPC interventions.

While most studies have standardized their pro-
tocols, forming a consensus of three 5-mincycles of
alternate ischemia and reperfusion, other studies with
contradictory results suggest that this may not be ideal
[12-14, 19-24]. This may be due to the existence of
two windows of protection in ischemic precondition-
ing [27, 28]. The first window of protection (also known
as the classical protective window) occurs immediately
after ischemic preconditioning, has a strong effect, and
lasts for 2 to 3h, which may be related to the release
of endogenous substances (such as adenosine, brady-
kinin, and nitric oxide). The second window of protec-
tion occurs 12 to 24 h after ischemic preconditioning,
has a weak effect, and lasts for 72 to 96h, which may

be related to the endogenous substances mediating cell
signaling pathways and gene regulation.

Limitations of this study

This study has some limitations. Firstly, the peak value of
postoperative liver function index may better reflect the
status of postoperative HIRI. Given that most research-
ers did not disclose all data associated with postop-
erative liver function indexes, peak levels could not be
analysed. Secondly, there were great heterogeneities in
the meta-analysis results of postoperative ALT and AST
levels. However, sensitivity and subgroup analyses did
not reduce the heterogeneity of the meta-analysis, and
failed to explore sources of high heterogeneity. Thirdly,
subgroup analyses of patients’ preoperative liver function
status and age were not performed due to lack of relevant
information, as the role of ischemic preconditioning may
be diminished in patients with cirrhosis or in the elderly.
Despite the above limitations, this study is still the most
accurate meta-analysis performed to date.

Conclusions

There were evident heterogeneities in several important
outcomes in this study (including postoperative ALT,
AST, and TBIL levels, and length of hospital stays),
as well as differences found in qualitative evaluations.
In conclusion, although RIPC does not cause harm to
patients and has some short-term hepatoprotective
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effects on HIRI during hepatectomies, there is insuf-
ficient data to support its routine use in clinical prac-
tice to improve clinical outcomes. Therefore, additional
RCTs with technical scientific rigor and standardiza-
tion are needed.
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