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Abstract

Background: Perioperative cerebral ischemia/hypoxia could induce hippocampal injury and has been reported to
induce cognitive impairment. In this study, we used cobalt chloride (CoCl,) to build a hypoxia model in mouse
hippocampal cell lines. Propofol, a widely used intravenous anesthetic agent, has been demonstrated to have

neuroprotective effect. Here, we explored whether and how propofol attenuated CoCl,-induced mouse hippocampal

HT22 cell injury.

Methods: Mouse hippocampal HT22 cells were pretreated with propofol, and then stimulated with CoCl,. Cell viability
was measured by cell counting kit 8 (CCK8). The effect of propofol on CoCl,-modulated expressions of B-cell lymphoma 2
(Bcl-2), BAX, cleaved caspase 3, phosphatase A2 (PP2A), and the phosphorylation of Ca**/Calmodulin (CaM)-dependent

protein kinase Il (p)CAMKIIa), neuron nitric oxide synthase at Ser™'? (pnNOS-Ser''?), neuron nitric oxide synthase at Ser

(pnNOS-Ser®"’) were detected by Western blot analysis.

847

Results: Compared with control, CoCl, treatment could significantly decrease cell viability, which could be reversed by
propofol. Further, we found CoCl, treatment could up-regulate the expression of PP2A, BAX, cleaved caspase three and
cause the phosphorylation of NNOS-Ser'*'?, but it down-regulated the expression of Bcl-2 and the phosphorylation of
CAMKlla and nNOS-Ser®*’. More importantly, these CoCl,-mediated effects were attentuated by propofol. In addition, we
demonstrated that propofol could exert similar effect to that of the PP2A inhibitor (okadaic acid). Further, the
PP2A activator (FTY720) and the CAMKIla inhibitor (KN93) could reverse the neuroprotective effect of propofol.

Conclusion: Our data indicated that propofol could attenuate CoCl,-induced HT22 cells hypoxia injury via PP2A/

CAMKIla/nNOS pathway.
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Background

Postoperative cognitive dysfunction (POCD) is a long-term
cognitive impairment after surgery and is becoming one of
the most ever-growing concerns in aged patients [1].
Transient global cerebral ischemia/hypoxia is one of
the major complications of several clinical situations
such as cardiac arrest and severe intraoperative systemic
hypotension [2] and has been implicated in the devel-
opment of POCD [2-6]. Perioperative ischemic/hypoxic
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brain injury often leads to irreversible brain damage,
resulting hippocampal neuron cells injury and was
considered the third cause of death and permanent
disability [7]. On cellular level, multipline parameters,
such as mitochondrial dysfunction and cell apoptosis,
have been widely used to represent cell injury. On
molecular level, neuron nitric oxide synthase (nNOS)
has been reported to be involved in the pathogenesis of
cerebral ischemia/hypoxia injury. Activation of nNOS
plays a crucial role in neuronal injury after cerebral
ischemia/hypoxia [8]. A growing body of evidence sug-
gested that nNOS phosphorylated at Ser'*'? by phosphatase
A2 (PP2A) could be a marker of activation of its enzyme
activity [9]. In contrast, Ca**/Calmodulin (CaM)-dependent
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protein kinase II (CAMKIIa) phosphorylates nNOS at
Ser®” leading to a reduction of its enzyme activity [10].
In addition, previous study has demonstrated that
CAMKIIa could be dephosphorylated by PP2A, leading to
a reduction of its enzyme activity [11]. Putting together, in-
hibition of the activity of PP2A may protect hippocampal
cells from injury in vitro.

Propofol, 2,6-diisopropylphenol, has been widely used
for the induction and maintenance of general anesthesia
in clinical practice. Many studies have indicated its
protective effects in multiple organs and tissues, such
as cardiovascular system [12], respiratory system [13]
and urinary system [14]. In central nervous system,
propofol has been demonstrated to be neuroprotective
against oxide stress [15] and ischemia injury [16].
However, the underlying mechanism is unclear. In the
present study, we used cobalt chloride (CoCl,) to build
an in vitro hypoxia model and aimed to clarify whether
and how propofol attenuated CoCl,-induced HT22 cell
hypoxia injury.

Methods

Cell culture and reagents

HT22 cells were obtained from GuangZhou Jennio
Bio- tech and maintained in DMEM (HyClone Laboratories,
Logan, Utah, USA) with 5 mM glucose and 10% fetal bovine
serum. Cells were incubated in a humidified atmosphere
with 5% CO, at 37 °C and sub-cultured when reaching
90% confluence. The eighth passage was used in the
present study.

Propofol (Sigma, St. Louis, MO, USA), PP2A inhibitor
okadaic acid (Sigma, St. Louis, MO, USA), and PP2A
activator FTY720 (Sigma, St. Louis, MO, USA) were
dissolved in DMSO (Sigma, St. Louis, MO, USA). In
order to avoid possible nonspecific effects, the final
concentration of DMSO was adjusted to 0.01% for each
solution. A 500 mM stock solution of CoCl, was
prepared by dissolving CoCl, powder (Sigma-Aldrich,
Dorset, UK) in serum-free DMEM.

Study design

HT?22 cells were treated with CoCl, for 0, 1, 2, 6, 12 and
24 h respectively. By measuring cell viability, we deter-
mined the appropriate CoCl, treatment condition with
significant effect on cell viability inhibition. During
general anesthesia, the concentration of propofol in brain
ranges from 4 to 20 pg/ml, which is about 20-100 M
[17]. Therefore, HT22 cells were pretreated with propofol
for 2 h with different concentrations (5, 10, 25, 50 uM) to
observe its protective effects, and the concentration of
maximal protective effects was determined. In the
following experiments, the optimal treatment time
and concentration of CoCl, and propofol were used to
investigate potential mechanisms.
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Analysis for cell viability

Cell viability was maesured by cell counting kit-8 (CCKS)
(Dojindo Laboratories, Kumamoto, Japan) according to
the manufacture’s instruction. Briefly, 5 x 10 cells per well
were plated in 96-well plates and incubated in 37 °C. After
designed treatments, 10 pul CCK-8 was added in each well
and the 96-well plate was incubated in 37 °C for 2 h.
Absorbance at a 450 nm wavelength of each well was
determined by a microplate reader (Synergy H4, Bio-Tek).
Accounting the mean value and standard deviation of
optical density for every six wells was used to draw the cell
viability curve.

Western blot analysis

After corresponding treatment, cells were harvested,
washed with cold 1 x PBS, and lysed with RIPA lysis buffer
(Beyotime Institute of Biotechnology, Shanghai, China) for
30 min on ice, then centrifuged at 12,000 g for 15 min at
4 °C. The protein concentration was determined by BCA
protein assay kit (Beyotime Institute of Biotechnology,
Shanghai, China). Equal amount (40 ug) of proteins
obtained from different samples were separated by 8 or
10% SDS-PAGE electrophoresis and transferred to polyvi-
nylidene fluoride (PVDF) membranes (Millipore). The
PVDF membranes were incubated with primary anti-
bodies at 4 °C overnight after being blocked with 5% skim
milk. The primary antibodies used were monoclonal anti-
body against B-actin (Santa Cruz Biotechnology, Santa
Cruz, CA, USA), PP2A (Cell Signaling Technology,
Danvers, MA, USA), CAMKIIa (abcam, Cambridge,
UK), pCAMKIIa (abcam, Cambridge, UK), nNOS (Santa
Cruz Biotechnology, Santa Cruz, CA, USA), pnNOS-Ser*!?
(abcam, Cambridge, UK), pnNOS-Ser847 (abcam,
Cambridge, UK), BAX (Cell Signaling Technology,
Danvers, MA, USA), Bcl-2 (proteintech, Shanghai,
China), caspase 3 (Cell Signaling Technology, Danvers, MA,
USA). Thereafter, the PVDF membranes were incubated
with secondary antibodies conjugated with horseradish per-
oxidase (HRP). The protein bands were developed with the
chemiluminescent reagents (Millipore, MA, USA). The
software of image j was used to analyze the respective
densities of the protein bands. In the present study, p-
actin was used as loading control and the data were
expressed as the ratio of specific protein expression to
B-actin expression.

Statistical analysis

Data were obtained from at least five separately per-
formed experiments and calculated with using Graph
Pad Prism. Results were expressed as mean + SD. An
ANOVA was used to determine the levels of signifi-
cance of differences among various treatments. A value
of p < 0.05 was considered significant.
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Results

CoCl, induced HT22 cell injury, which was attenuated by
propofol

In HT22 cells, 500 uM CoCl, treatment induced cell
injury in a time-dependent manner. As shown in Fig. 1a,
we found that 500 pM CoCl, treatment for 12 h signifi-
cantly reduced cell viability by 27% (p <0.05). During
general anesthesia, the concentration of propofol in brain
ranges from 4 to 20 pg/mlwhich is about 20-100 pM
[17]. Therefore, HT22 cells were pretreated with propofol
for 2 h with different concentrations (5, 10, 25, 50 uM) to
observe its protective effects. As shown in Fig. 1b, 25 uM
propofol showed a significantly protective effect. Com-
pared with CoCl, treatment, propofol (25 uM, 2 h)
restored cell viability by 12% (p <0.05). Thereafter,
12 h treatment of 500 pM CoCl, and 25 pM of propofol
pretreatment for 2 h were used in the following experi-
ments to study the signaling pathway involved in the
protective effects of propofol.
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Fig. 1 Propofol attenuated CoCl,-induced HT22 cell injury. a In HT22
cells, 500 pM CoCl, treatment induced cell injury in a time-dependent
manner, and 12 h treatment significantly reduced cell viability. b
25 uM propofol significantly reduced CoCl,-induced cytotoxicity.
(* p<0.05 vs. control, # p <0.05 vs. CoCl, treatement, n=5, Data
were shown as mean + SD)
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CoCl, up-regulated BAX and caspase three expression,
and down-regulated Bcl-2 expression, which could be
modulated by propofol

Compared with control, CoCl, (500 pM, 12 h) treatment
increased the expression of pro-apoptotic protein BAX
by 348% (p < 0.05, Fig. 2a, c) and the expression of cleaved
caspase 3 by 264% (p < 0.05, Fig. 2a, d), while it decreased
the expression of anti-apoptotic protein Bcl2 by 56%
(p <0.05, Fig. 2a, b). However, these effects were re-
versed by 25 uM propofol treatment (p < 0.05, Fig. 2).
More importantly, compared with control, propofol
treatment alone had no significant effect on the ex-
pression of these proteins.

CoCl, up-regulated PP2A and pnNOS-Ser'*'? expression,
and down-regulated pCAMKIla and pnNOS-Ser®%’
expression, which could be modulated by propofol
Compared with control, CoCl, (500 uM, 12 h) treatment
increased the expression of PP2A by 231% (p<0.05,
Fig. 3a, c), which was inhibited by 25 uM propofol treat-
ment (p < 0.05, Fig. 3a, c).

We also demonstrated that CoCl, (500 pM, 12 h)
treatment decreased the expression of pCAMKIIa by
50% (p < 0.05, Fig. 3a, d), which was reversed by 25 pM
propofol treatment (p < 0.05, Fig. 3a, d).

Compared with control, CoCl, (500 uM, 12 h) treatment
decreased the expression of pnNOS-Ser®” by 67% (p <
0.05, Fig. 3a, e) but increased the expression of pnNOS-
Ser'*? by 261% (p < 0.05, Fig. 3a, f), which was reversed by
25 uM propofol treatment (p < 0.05, Fig. 3a, e and f).

Similarly, compared with control, propofol treatment
alone had no significant effect on the expression and
phoshoylation of these proteins.

CoCl-inhibited cell viability, up-regualted PP2A and
pnNOS-Ser'*'? expression, and down-regulated pCAMKIla
and pnNOS-Ser®*” expression, which could be modulated
by propofol, PP2A inhibitor okadaic acid, PP2A activator
FTY720, CAMKIla inhibitor KN93

To confirm the role of PP2A, we used the PP2A inhibitor
(okadaic acid) and the PP2A activator (FTY720). And to
confirm the role of CAMKIla, we used the CAMKIIlx
inhibitor (KN93).

Compared with CoCl, treatment, okadaic acid decreased
the expression of PP2A and BAX, but increased the expres-
sion of Bcl-2 (p < 0.05, Fig. 4a, b and c), which were similar
to the effect of propofol. Moreover, FTY720 and KN93
could reverse the effects of propofol. However, the effect of
propofol on CoCl,-induced PP2A expression was not
affected by KN93, which indiated that the phosphorylation
of CAMKIIa was modulated by PP2A.

Compared with CoCl, treatment, okadaic acid increased
the expression of pCAMKIIx (p < 0.05, Fig. 4e, f), which
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was similar to the effect of propofol treatment. Moreover,
FTY720 and KN93 could reverse the effects of propofol.
Compared with CoCl, treatment, okadaic acid decreased
the expression of pnNOS-Ser**'? but increased the expres-
sion pnNOS-Ser®"” (p <0.05, Fig. 4g, h and i), which was
similar to the effect of propofol treatment. Moreover, the
effects of propofol could be reversed by FTY720 and KN93.
As shown in Fig. 4j, okadaic acid attenuated CoCl,-
induced cell injury (87.5 vs 73.1%, p < 0.05), which was
similar to the effect of propofol treatment. Moreover,
FTY720 and KN93 could reverse the effects of propofol.

Discussion

The major finding of the present study is that in mouse
hippocampal HT22 cells, CoCl, activated PP2A, thus
inhibiting CAMKIIa phosphorylation and increasing
nNOS activity, resulting in increased expression of pro-
apoptotic protein BAX and caspase 3 activity. All these
effects lead to the inhibition of cell viability. Further,
propofol could protect HT22 cells against CoCl,-in-
duced apoptosis and cell injury. Our data also suggested
that the mechanisms of the protective effects of propofol
may involve down-regulating PP2A expression, thus
inducing CAMKIIa phosphorylation and inhibiting nNOS
activity, resulting in anti-apoptotic protein Bcl-2 expres-
sion and therefore reversing cell viability.

Emerging evidence has suggested that ischemia stroke
and transient cerebral ischemia/hypoxia promote cogni-
tive impairments in multiple nervous system diseases,
such as Alzheimer's disease and POCD [18-20]. During
the perioperative period, clinical situations such as cardiac
arrest or severe systemic hypotension could lead to transi-
ent global cerebral hypoxia and become a risk factor of
POCD. In this study, we used CoCl, to build an in vitro
hypoxia model. It is a widely used chemical mimic of hyp-
oxia [21]. As shown in Fig. 1, CoCl, treatment (500 puM,
12 h) significantly decreased cell viability.

CAMKIla is highly expressed in brain and is especially
enriched at excitatory synapses and their postsynaptic
densities (PSDs). It plays an important role in long-term
potentiation (LTP) of excitatory synapse strength and
memory formation [22]. Any noxious stimulus, which
inhibited CAMKIIa phosphorylation, could impair cog-
nitive function [23] and its phosphorylation at T286
serves as a hallmark feature of CAMKIIa activity.

PP2A worked as an important regulator of mitochondrial
shape and function, and a pervious study showed that
PP2A could dephosphorylate and decrease the activation of
CAMKIIa. So, we hypothesized that activation of PP2A
may result in a neurotoxic effect [24, 25]. Consistently, in
the present study, we reported that CoCl, could cause
cell injury by activating PP2A and thus inhibiting the
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phosphorylation of CAMKIIa (Figs. 1, 2 and 3). nNOS,
the main nitric oxide donor in the brain, is supposed to
produce detrimental effects in neurons after cerebral
ischemia [26]. Phosphorylation nNOS at Ser®* could
inhibit the activity of nNOS and exert neuroprotective
effect. In addition, after cerebral ischemia, CAMKII«x
phosphorylated nNOS at Ser®” and attenuated nNOS
activity, which could protect neuron cells from ischemic
damage [26]. While the phosphorylation of nNOS at
Ser'*'? by PP2A could increase the activity of nNOS, result-
ing in neuron injury. As shown in Fig. 3, CoCl, treatment
could increase the phosphortlation of nNOS at Ser'*'?, but
decrease the phosphorylation of nNOS at Ser®".

The widely used intravenous anesthetic in clinical
settings, propofol, in addition to its sedative-hypnotic
property, previous in vitro and in vivo studies indicated
that propofol may have protective effects in neuron

system [16, 27]. In the present study, we found propofol
attenuated CoCl,-induced cell injury by reversing the
phosphorylation of CAMKIIa (Fig. 3a, d). In contrast,
previous study demonstrated that repeated exposure to
propofol impairs spatial learning, inhibits LTP and the
noxious effect of propofol was related to CAMKIl«
[28]. It is noted that the propofol-mediated modula-
tions on the central nervous system may depend on the
exposure time of propofol. Studies have demonstrated
that in human umbilical vein endothelial cells, propofol
exerted protective effect by inhibiting PP2A. Similarly,
in the present study, propofol protect mouse hippo-
campal HT22 cells from CoCl,-induced injury by inhi-
biting the activation of PP2A (Fig. 3a, c). Further, we
used a PP2A inhibitor (okadaic acid), and found the
protective effect of propofol was similar to that of
okadaic acid. Moreover, the protective effect of propofol
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could be attenuated by a PP2A activator (FTY720) (Fig. 4).
These data indicated that the protective effect of propofol
was achieved by inhibiting PP2A expression.

There are some limitations in this study. Firstly, pervious
study has reported that CAMKII« is highly sensitive to
intracellular Ca** signaling, and it phosphorylates and up-
regulates many of the key proteins involved in intracellular
Ca®" loading in ischemia injury [29]. In this study, we only
explored the effect of CAMKIIa but did not detecte intra-
cellular Ca”* levels. Secondly, studies have demonstrated
that the effects of propofol may be mediated by two differ-
ent receptors, including gamma-aminobutyric acid (GABA)
type receptor [30] and N-methyl-D-aspartate (NMDA) re-
ceptor (NR1 and NR2B) [31]. At present, we did not know
by which receptor propofol induced the observed effects.
Further experiments are required to investigate this issue.

Conclusion

This study indicated that in mouse hippocampal HT22
cells, CoCl, activated PP2A, thus inhibiting CAMKIlx
phosphorylation and increasing nNOS activity, resulting in
increased expression of pro-apoptotic protein BAX and
caspase three activity. All these effects lead to the inhibition
of cell viability. More importantly, we found that propofol
could protect HT22 cells against CoCl,-induced apoptosis
and cell injury. The mechanisms of the protective effects of
propofol may involve down-regulating PP2A expression,
thus inducing CAMKIla phosphorylation and inhibiting
nNOS activity, resulting in anti-apoptotic protein Bcl-2
expression and therefore reversing cell viability.
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